证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).证明逆定理全题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).反之,如果lim(h->0)[f(x0+h)-f(x0-h)]/2h存在,那么f'(x0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:48:15
xRJA}% 6̬EdVٺ)^4Zk57B!Qcn4-(D2M+tkJ)8|af9s(;}IǏjjnR7%wIճzY&535+ 1; -?VucX_[
fϾWu!1c&7*$uwsvNѯo$n1~Eሟ_/Z#\@^{+ 0u'T~8%śbb@Nfa
B,S'>n!Y9ͩsh@0a;DPiaz.UL
8BLAcBC+0* HX_E'^?^M5LB#WHO4
koЋHl6 7
证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).证明逆定理全题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2h=f'(x0).反之,如果lim(h->0)[f(x0+h)-f(x0-h)]/2h存在,那么f'(x0)
一道关于证明拐点的问题!原题:设y=f(x)在x=x0的某邻域内具有三阶连续导数,如果f(x0)的二阶导数等于0,而f(x0)的三阶导数不等于0,试问(x0,f(x0))是否为拐点?为什么?{因为f(x)的三阶导数在x0
泰勒公式做证明不等式的疑问.我用泰勒公式做证明不等式,条件是f(x)=f(x0)+f`(x0)(x-x0)+f(x0)*(x-x0)^2+o(x-x0)^2,如果f`(x0)=0和f(x0)大于0,在x大于x0 的时候,是否可以推出f(x)-f(x0)大于0.我这样在处理
高数问题:设函数y=f(x)与y=F(x)在点x0处可导,试证曲线y=f(x)与y=F(x)在点x0处相切的充要条件是:当x趋向于x0时,f(x)-F(x)是x-x0的高阶无穷小.请给出详细证明,谢谢!
求问函数可导与连续的关系高数书上写的定理:如果函数y=f(x)在点x0处可导,则f(x)在点x0处连续证明:因为y=f(x)在点x0处可导,所以有lim(Δx→0)(Δy/Δx)=f '(x),于是lim(Δx→0)Δy=lim(Δx→0)(Δy/Δx)Δx=lim
f(x)连续,|f(x)|在x0处可导,则f(x)在x0出可导.如何证明?
函数极限疑问?y=F(X)在x0的某一领域内有定义 如果 lim(x→x0)f(x)=f(x0) 那么称函数f(x)在x0点 连续.极限中不是说与f(x0)点有无定义 无关系,那如果 f(x0)根本无定义 还怎么 lim(x→x0)
设Fx,y)=f(x),f(x)在x0处连续,证明:对任意y0∈R,F(x,y)在(x0,y0)处连续
若y = f(x)在x0处有f'(x0)存在,那么在曲线y = f(x)上点(x0,y0)处的切线方程为y-y0=f'(x0)(x-x0)判断题
证明三角函数的单调性.求证明:(1):y=x/1-x (x0)上面的那两个是求定义域的,刚刚忘记写了。。。不好意思。还有一个证明题:设f(x)为定义在(-q,q)内的奇函数,若f(x)在(0,q)内单调增加,证明f(x)
设y=f(x)在点x0处可导,且f(x0)为最大值,求lim△x→0 f(xo+△x)-f(x0)/△x
如果函数f(x)在点X0处可导,且在X0处的极值,则f1(X0)=多少
设函数f(x)在x0处有三阶导数,且f(x0)=0,f'''(x0)≠0,试证明点(x0,f(x0))必为拐点
设函数y=f(x)在点x0处可导,且f'(x0)=a,则lim△x→0 f(x0–2△x)–f设函数y=f(x)在点x0处可导,且f'(x0)=a,则lim△x→0 f(x0–2△x)–f(x0)/△x 为什么?
设函数y=f(x)在点x0的某一邻域内有定义,证明:f'(x0)=A的充分必要条件是f_'(x0)=f+'(x0)=A
证明:若函数在区间[x0-a,x0]上连续,在(x0-a,x0)内可导,且limx->x0-(x0左极限)f'(x)存在,则limx->x0-(左极限)f'(x)=x0点左导数
关于数学分析的证明题设函数f(x,y),g(x,y)在有界闭区域D上有连续偏导数,且f(x,y)=g(x,y),对任意A(x,y)∈ ∂D,求证:存在X0∈D^0,使得▽f(X0)=▽g(X0)
费马引理中的领域U(x0)是什么意思函数f(x)在点x0的某邻域U(x0)内有定义,并且在x0处可导,如果对于任意的x∈U(x0),都有f(x)≤f(x0)(或f(x)≥f(x0)),那么f'(x0)=0