椭圆mx^2+ny^2=1与直线x+y=3相交于A、B两点,C是AB中点,若|AB|=2√2,OC的斜率为2(O为原点)试确定椭圆方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:42:13
xRMo@+]ػ HvzMUQJ M!A*)QD!Ѹ=pSz +`̾oGw:,{"xmzNbFyzA0iwf S:6X1Nn6ߚ=(iQߧFM`7WX$K߹emSߺAҖLVK0ވsCy9S@yvk& o=y<.KY[\^Μ 9gH!~9$΢Ȃ‚d 6lV@ai)ļL9Z,`M5wXOU&0GHa'*nZ 3Zx7Qh y5)Xʧy~FR-, E+iMŽ y+|AoHE.YH̸ e PA)Pa,cd{0n";EU̮zaYqoNN^=!=}O$r`zHN9!̶5Co'jx8 -doPY5'
若直线mx+ny=4与圆x^2+y^2=4没有交点,则过点P(m,n)的直线与椭圆x^2/9+y^2/4=1的交点个数是若直线mx+ny=4与圆O:x^2 + y^2 = 4没有交点,则过点P(m,n)的直线与椭圆x^2 /9 + y^2 /4 = 1 (九分之X平方加四分之Y 若直线mx-ny=4与圆:x^2+y^2=4没有交点,则过点P(m,n)的直线与椭圆x^2/9+y^2/4-1的交点个数是 椭圆mx^2+ny^2=1与直线x+y=3相交于A、B两点,C是AB中点,若|AB|=2√2,OC的斜率为2(O为原点),试确定椭圆 若椭圆mx^2+ny^2=1与直线x+y-1=0交于A,B两点,过原点与线段AB中点的直线斜率为√2/2,求n/m的值 若椭圆mX^2+nY^2=1与直线X+Y+1=0交于A,B两点,过原点与线段AB中点的直线的斜率为2分之根号2,则n/m为多少? 已知直线y=x+1与椭圆mx^2+ny^2=1(m>n>0)相交于A,B两点,若弦AB的中点的横坐标为-1/3,则双曲线x^2/m^2-y^ 椭圆mx^2+ny^2=1(m>0,n>0且m≠n)与直线y=x+1交于A,B两点,求证当OA⊥OB时,m+n=2 直线与椭圆的关系若斜率为1直线l与椭圆x^2/4+y^2=1相交于A B亮点,求AB的中点的轨迹方程.椭圆mx^2+ny^2=1与直线x+y-1=0相交于A B亮点,C是A B 的中点,若AB=2√ 2,直线OC的斜率为√ 2/2,求椭圆的方程.别解 已知椭圆的方程为x^2+3y^2=3,圆的方程x^2+y^2=1,M(m,n)为椭圆上的点,直线mx+ny=1与圆x^2+y^2=1交于A,B两点.求证|AB|=2√1-1/(m^2+n^2) 动直线mx+ny=1交椭圆x^2+2y^2=1于M,Nl两点,点O为椭圆中心,若OM垂直于ON,求m,n买、满足的条件动直线mx+ny=1交椭圆x^2+2y^2=1于M,Nl两点,点O为椭圆中心,若OM垂直于ON,求m,n满足的条件 若直线mx-ny=4与圆O:x+y=4没有交点,则过点P(m,n)的直线与椭圆x/9+y/4=1的焦点个数是 1.已知椭圆的中心为坐标原点0,焦点在X轴上,斜率为t且过椭圆右焦点P2的直线交椭圆于A,B两点.向量OA+向量OB于向量a+(3.-3)共线.求椭圆离心率2.若椭圆mx^2+ny^2=1与直线x+y=0,交于A,B两点.过原 直线的倾斜角和斜率| 直线mx+ny-1=0的倾斜角是直线2x-y+1=0的倾斜角的两倍直线mx+ny-1=0的倾斜角是直线2x-y+1=0的倾斜角的两倍,与两坐标轴围成的三角形的面积等于6,求m和n的值. 证明m-2n=0是mx+2y-1=0与直线x-ny+2=0互相垂直的充要条件. 若直线mx+ny=1与圆x²+y²=4没有交点,则过(m,n)的直线与椭圆x²/9+y²/4=1的交点个数为?a.0个 b.1 个 c.2 个 d.1或2个 直线Y=MX+1与椭圆x ^2+y^2有且只有一个交点,则M^2=? 已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到焦点F的最大距离为8问:已知圆O:x^2+y^2=1,直线l:mx+ny=1.求证:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O 已知直线y=x+1椭圆mx^2+ny^2=1(m>n>0相交于A.B两点,若弦AB的中点的……已知直线y=x+1椭圆mx^2+ny^2=1(m>n>0相交于A.B两点,若弦AB的中点的横坐标等于-1/3,则双曲线x^/m^-y^/n^=1的两条渐近线的夹角的正切值