如图,已知抛物线的方程C1:y=- 1 / m (x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E如图,已知抛物线的方程C1:y=- 1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:22:18
xn@_ŊT 4AIj@l1u-A!"@%
T
N.൝S^B9p"ٝoFS87pj$:|_D'{=Mʢf̯%β5wy
xxt^0|Qb{屔&'J>:)ʚ_LMA'wg;=DOOy&сzgt0A}JZ
_HZ}Go ͷ+j7N:W
?3qoV=jD̯_UO)s.EΙ:ޓ'2Wn{r6|X.7 3E.%'Ȧ ,hjr <,.xI8F^yexN9VD
f ^ed 2B<*iA"ԡf;6AbA\_@U
hND*
已知:抛物线C1 C2关于x轴对称,抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,如图,已知:抛物线C1 C2关于x轴对称,:抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,
如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于 点B、C,与y 轴相交于点E如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧.(1)若抛物线C1
已知:抛物线C1 C2关于x轴对称,抛物线C2 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,如图,已知:抛物线C1 C2关于x轴对称,:抛物线C2 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,
如图,已知抛物线C1:y=2/3x的平方+16/3x+8与抛物线C2关于y轴对称,求抛物线C2的解析式
如图,已知抛物线的方程C1:y=- 1 / m (x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E如图,已知抛物线的方程C1:y=- 1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在
如图,已知抛物线的方程C1:y=- 1 / m (x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E如图,已知抛物线的方程C1:y=- 1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在
如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B(2)在曲线BOA上任取异于A,B的点C,连接AC并延长交曲线C2于D,设P为三角形BCD重心轨迹上的任意一点,过P
如图,已知抛物线的方程C1:y=-1/m(x+2)(x-2m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)条件下,在抛物线的对称
已知抛物线C1:y=2x^2与抛物线C2关于y=-x对称,则抛物线C2的准线方程为
两个抛物线关于原点对称,高手帮忙啊!如图,抛物线C1:y=½x²+4x与抛物线C2关于坐标原点成中心对称.直线y=x分别与抛物线C1,C2.交于点A,B. (1)直接写出抛物线C2的解析式(2)在抛物线C1的对
已知直线l的方程y=mx+m^2,抛物线C1的顶点和椭圆C2的中心都在坐标原点,且它们的焦点均在y轴上,当m=1时,直线l与抛物线C1有且只有一个公共点,求抛物线C1的方程
35.已知:如图,抛物线C1、C2关于x轴对称;抛物线C1、C3关于y轴对称.抛物线C1、C2、C3与x轴相交于A、B、C、35. 已知:如图,抛物线C1、C2关于x轴对称;抛物线C1、C3关于y轴对称.抛物线C1、C2、C3与x轴
如图,已知抛物线C1:y=-1/3x²+mx+4交x轴的正半轴于点A,交x轴的负半轴于点A,交x轴的负半轴于点H(-3,0)交y轴于点B.1将抛物线C1:y=-1/3x²+mx+4向右平移使其过原点O得到抛物线C2,C2与C1交与点G,
在平面直角坐标系xOy中,已知椭圆C1:x^2/a^2+y^2/b^2=1的离心率为√2/2直线n:y=1与椭圆C1相切(1)求椭圆C1方程(2)设直线l同时与椭圆C1和抛物线C2:y^2=4x相切,求直线l方程.
在平面直角坐标系xOy中,已知椭圆C1:x^2/a^2+y^2/b^2=1的离心率为√2/2直线n:y=1与椭圆C1相切(1)求椭圆C1方程(2)设直线l同时与椭圆C1和抛物线C2:y^2=4x相切,求直线l方程
已知抛物线C1:y=2x^2与抛物线C2关于直线y=-x对称,则C2的准线方程
已知抛物线C1:y=2x^2与抛物线C2关于直线y=-x对称,则C2的准线方程?
如图,已知抛物线C1的解析式为y=-x^2+2x+8,图像与y轴交于D点,并且顶点A在双曲线上.若开口向上的抛物线C2与C1的形状、大小完全相同,并且C2的顶点P始终在C1上,证明:抛物线C2一定经过A点