关于矩阵的特征值3-t -1 =(3-t)^2-1 请问这个是怎么来的、那个-1是怎么来的-1 3-t
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 14:33:39
x){ںɮW;k|ڰXDAPVЌ32_rg>ٱٌx6w)PƗM⺆h2@}@lqu`v;dϦ|W#hF2MJ5(|F{:t
|stt$8<~9龎[֫)Y?Ɏ'{fսX?iׂg
Ľ̌l@a :Z
关于矩阵的特征值3-t -1 =(3-t)^2-1 请问这个是怎么来的、那个-1是怎么来的-1 3-t
设三阶对称矩阵A的特征值为3、6、6,与特征值3对应的特征向量为P1=(1 1 1)T,求矩阵A
已知三阶矩阵A的三个特征值为1,-2,3,则|A|=?A^-1的特征值为?A^T的特征值为?A*的特征值为?
设3阶实对称矩阵A的特征值为-1,1,1,属于特征值-1的特征向量为a=[0 1 1]^t.
设3阶实对称矩阵A的特征值为-1,1,1,-1对应的特征向量为(0,1,1)的转置,求A设属于特征值1的特征向量为(x1,x2,x3)^T由于实对称矩阵属于不同特征值的特征向量正交故(x1,x2,x3)^T与a1=(0,1,1)^T正交.即
已知3阶实对称矩阵A的3个特征值a1=0,a2=a3=2,且特征值0对应的特征向量为(1,0,-1)^T,求矩阵A
设3阶实对称阵A的特征值是1,2,3;矩阵A的对应与特征值1,2的特征向量分别为(-1,-1,1)T,(1,-2,-1)T.求矩阵A
线性代数中,告诉你特征值.和特征向量..怎么求矩阵A...设3阶矩阵A的特征值为1,2,3,相应的特征向量为(1.2.2)^T;(2.-2.1)^T;(-2.-1.2) ,求A.
设6,3,3为实对称矩阵A的特征值,A的对应于3的特征向量为a1=(-1,0,1)T,a2=(1,2,1)T,求矩阵A
设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3)T,求A设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3)T,求矩阵A.
已知3阶实对称矩阵 的特征值为4,1,1,且特征值4所对应的特征向量为a1=(1 1 1)T 特征值1所对应的特征向量为a2=(-1 1 0)T a3=(-1 0 1)T (1)求 ;(2)写出 所对应的二次型;(3)求一个正交
若三阶矩阵A的三个特征值为1,2,-3,属于特征值1的特征向量为p1(1,1,1)^T,2的特征值为p2(1,-1,0)^T则向量p=-p1-p2=(-2,0,-1)^T是A的特征向量吗?说明理由
设三阶实对称矩阵A的特征值为3(二重根),4(一重根),a1=(1,2,2)^T是A的4的特征向量,
设A为4阶矩阵,若α1=(1,2,3,4)^T是AX=0的解,求A的特征值.
已知3阶实对称矩阵A的各行元素之和为4,向量a(-4,2,2)^T是齐次线性方程组Ax=0的解,且矩阵A的对角元素之和为-1,则(1)矩阵A的特征值为?(2)属于特征值的特征向量分别为?(3)矩阵A等于?思路
已知3阶实对称矩阵A的各行元素之和为4,向量a(-4,2,2)^T是齐次线性方程组Ax=0的解,且矩阵A的对角元素之和为-1,则(1)矩阵A的特征值为?(2)属于特征值的特征向量分别为?(3)矩阵A等于?
在线性空间R^3中,定义线性变换T为T(x1,x2,x3)'=(-x1-2x2+2x3,x2,x3)',求T的所有特征值和特征向量 '代表转置,我算了特征值是-1,1,1,但答案是-1,2,2,我可能把T对应的矩阵写错了,加了转置和没加有什么区
线性代数:设三阶实对称矩阵A的秩为2,r1=r2=6是A的二重特征值.设三阶实对称矩阵A的秩为2,r1=r2=6是A的二重特征值.若α1=(1,1,0)^T,α2=(2,1,1)^T,α3=(-1,2,-3)^T都是A的属于特征值6的特征向量.(1)求A的另一