因式分解:(x⁴+x²-4)(x⁴+x²+3)+10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 12:29:30
因式分解:(x⁴+x²-4)(x⁴+x²+3)+10
xTj@~BD5>@v& ͥ=T(!җIVW誫&(iovvf\z{O :>_wm}k@6 %C ]\sx' $p8(kWRe?Ҙ2 qS"t 2YWR05|0A[<6FC7©wixo/^L

因式分解:(x⁴+x²-4)(x⁴+x²+3)+10
因式分解:(x⁴+x²-4)(x⁴+x²+3)+10

因式分解:(x⁴+x²-4)(x⁴+x²+3)+10
(x⁴+x²-4)(x⁴+x²+3)+10
=(x⁴+x²)²-(x⁴+x²)-12+10
=(x⁴+x²)²-(x⁴+x²)-2
=(x⁴+x²-2)(x⁴+x²+1)
=(x²+2)(x²-1)【(x⁴+2x²+1)-x²】
=(x²+2)(x+1)(x-1)【(x²+1)²-x²】
=(x²+2)(x+1)(x-1)(x²+x+1)(x²-x+1)

(x⁴+x²-4)(x⁴+x²+3)+10
=(x⁴+x²-4)(x⁴+x²-4+7)+10
=(x⁴+x²-4)²+7(x⁴+x²-4)+10
=(x⁴+x²-4+2)(x⁴+x²-4+5...

全部展开

(x⁴+x²-4)(x⁴+x²+3)+10
=(x⁴+x²-4)(x⁴+x²-4+7)+10
=(x⁴+x²-4)²+7(x⁴+x²-4)+10
=(x⁴+x²-4+2)(x⁴+x²-4+5)
=(x⁴+x²-2)(x⁴+x²+1)
=(x²-1)(x²+2)(x⁴+x²+1)
=(x+1)(x-1)(x²+2)(x⁴+x²+1)

收起

换元法,设t=x⁴+x²
所以,
原式=(t-4)(t+3)+10
=t²-t-2
=(t-2)(t+1)
=(x⁴+x²-2)(x⁴+x²+1)

令y=x⁴+x²
原式=(y-4)(y+3)+10
=y²-y-12+10
=y²-y-2
=(y-2)(y+1)
=(x⁴+x²-2)(x⁴+x²+1)
=(x²+2)(x²-1)(x⁴+x²+1)
=(x+1)(x-1)(x²+2)(x⁴+x²+1)