(1-tanα)/(1+tanα)=3-2√2 求[(sinα+cosα)^2-1]/(cotα-sinα乘cosα) 的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:27:03
(1-tanα)/(1+tanα)=3-2√2 求[(sinα+cosα)^2-1]/(cotα-sinα乘cosα) 的值
x啿N0_r\+/RR"{K ,H]#}L%~s :L*#GbވWx-Pvũd;)s*/CM QYX~+%_p%M)kvԖ:d)8U0W)䈥 Fzv::]G"D0 Õ:P@B٩z8re$q5%7IRk7cˆX_dAV+;:U|?q/bRrfPĜF|@岹[E+殌&fI#lJsͶg`% P 8_q,N Q?\=ըn?aCpNgnvgyd3q k75r66BlT T:pU˼FX#dC

(1-tanα)/(1+tanα)=3-2√2 求[(sinα+cosα)^2-1]/(cotα-sinα乘cosα) 的值
(1-tanα)/(1+tanα)=3-2√2 求[(sinα+cosα)^2-1]/(cotα-sinα乘cosα) 的值

(1-tanα)/(1+tanα)=3-2√2 求[(sinα+cosα)^2-1]/(cotα-sinα乘cosα) 的值
[(sinα+cosα)^2-1]/(cotα-sinα乘cosα)
=2sinacosa/(cota-sinacoa)
=2/[(csca)^2-1]
=2(tana)^2
又由
(1-tanα)/(1+tanα)=3-2√2
1-tana=(3-2√2)+(3-2√2)tana

(2√2-4)tana=2-2√2
tana=(2-2√2)/(2√2-4)
所以原式=1

(1-tanα)/(1+tanα)=3-2√2
(1-tanα)=(1+tanα)(3-2√2)
tanα=根号2/2
[(sinα+cosα)^2-1]/(cotα-sinαcosα)
=[sin^2α+cos^2α+2sinαcosα-1]/(cosα/sinα-sinαcosα)
=[1+2sinαcosα-1]/(cosα/sinα-sinαco...

全部展开

(1-tanα)/(1+tanα)=3-2√2
(1-tanα)=(1+tanα)(3-2√2)
tanα=根号2/2
[(sinα+cosα)^2-1]/(cotα-sinαcosα)
=[sin^2α+cos^2α+2sinαcosα-1]/(cosα/sinα-sinαcosα)
=[1+2sinαcosα-1]/(cosα/sinα-sinαcosα)
=2sinαcosα/(cosα/sinα-sinαcosα)
=2sin^2αcosα/(cosα-sin^2αcosα)
=2sin^2α/(1-sin^2α)
=2sin^2α/(cos^2α)
=2tan^2α
=2*(根号2/2)^2
=1

收起

[(sinα+cosα)^2-1]/(cotα-sinαcosα) ]
=2sinacosa/(cosa/sina-sinacosa)
=2/(1/sin²a -1)
=2/(cos²a/sin²a)
=2sin²a/cos²a
=2tan²a
由(1-tanα)/(1+tanα)=3-2√...

全部展开

[(sinα+cosα)^2-1]/(cotα-sinαcosα) ]
=2sinacosa/(cosa/sina-sinacosa)
=2/(1/sin²a -1)
=2/(cos²a/sin²a)
=2sin²a/cos²a
=2tan²a
由(1-tanα)/(1+tanα)=3-2√2得
1-tana=3-2√2(1+tana)
1-tana=3-2√2+(3-2√2)tana
得√2-1=(2-√2)tana
所以tana=(√2-1)/(2-√2)=(√2-1)(2+√2)/2=(2√2+2-√2-2)/2=√2/2
所以
[(sinα+cosα)^2-1]/(cotα-sinαcosα) ]
=2tan²a
=2(√2/2)²
=1

收起