知双曲线x^2-y^2/a^2=1(a>√2)的两条渐近线的夹角为π/3,求双曲线的离心率说是2√3/3?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:31:01
知双曲线x^2-y^2/a^2=1(a>√2)的两条渐近线的夹角为π/3,求双曲线的离心率说是2√3/3?
xN@@( QHZvDQMPHLD.B*;L] vjAŝƍ?#'^]Vn(t #5Iا*ϹҚAVԇOXk՛I~uOGYi5촉aLE^-_t"Qvi6isN8ʖg&EM}/m=t?iGW BfY]Ί6@!GPË8-ߋioN3G*Tc%R |^Rj&8&N `;z4:ph*씰>+PȄEse[Mn߆ CyӥI׈xciǦrzi~uvƧ Ph*KA[G95[^ dzbϺOd4-

知双曲线x^2-y^2/a^2=1(a>√2)的两条渐近线的夹角为π/3,求双曲线的离心率说是2√3/3?
知双曲线x^2-y^2/a^2=1(a>√2)的两条渐近线的夹角为π/3,求双曲线的离心率
说是2√3/3?

知双曲线x^2-y^2/a^2=1(a>√2)的两条渐近线的夹角为π/3,求双曲线的离心率说是2√3/3?
楼上是对的
夹角为π/3,即有一条渐近线与y轴的夹角为π/6,渐近线的斜率为tan60
即b:a=tan60
又因为由c^2=a^2+b^2
即可算出离心率c/a为2

将双曲线改为:x²-y²/b²=1(b>√2),
有两种可能:
1.两条渐近线的夹x轴的角为π/3
tanπ/6=b/1=√3/3===>b=√3/3<√2,与已知条件矛盾
2.两条渐近线的夹y轴的角为π/3
tan(π/2-π/6)=tan(π/3)==b/1=√3===>b=√3>√2,成立
∴c=√(a²...

全部展开

将双曲线改为:x²-y²/b²=1(b>√2),
有两种可能:
1.两条渐近线的夹x轴的角为π/3
tanπ/6=b/1=√3/3===>b=√3/3<√2,与已知条件矛盾
2.两条渐近线的夹y轴的角为π/3
tan(π/2-π/6)=tan(π/3)==b/1=√3===>b=√3>√2,成立
∴c=√(a²+b²)=2
===>离心率e=c/a=2

收起