已知关于x的方程x²-(k+1)x+1/4k²+1=0,根据下列条件,分别求k的值:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:38:15
已知关于x的方程x²-(k+1)x+1/4k²+1=0,根据下列条件,分别求k的值:
xTNA} ;?n]Ż@cZ)ƍWĀ)B+`@b DZZ4QLw W}+ ^t;Ι3gwfS1k{}Ӛo-9Mh^FgI ^07a"Q{n/jVbj|ϭg{l\M)SűT~rRIPҴ* ff7x^\aP*r^{U \^ 0x'0K)IP(4 #e*2hc]a8KʢdLI1Y&,Ƅţ E!hZD]Sǒ8$8I,1-qE-_~o= _/~HfaYψS@E&Q#:5R0b

已知关于x的方程x²-(k+1)x+1/4k²+1=0,根据下列条件,分别求k的值:
已知关于x的方程x²-(k+1)x+1/4k²+1=0,根据下列条件,分别求k的值:

已知关于x的方程x²-(k+1)x+1/4k²+1=0,根据下列条件,分别求k的值:
1) ⊿=(k+1)²-4(1/4 k² +1)=k²+2k+1-k²-4=2k-3>0
k>3/2 (1)
x1*x2=1/4 k² +1=5 k²=16 k=±4 (2)
由(1)(2)得 k=4
2) 当x1=x2 则 ⊿=(k+1)²-4(1/4 k² +1)=k²+2k+1-k²-4=2k-3=0 k=3/2
当x1=-x2 则 ⊿=(k+1)²-4(1/4 k² +1)=k²+2k+1-k²-4=2k-3>0 k>3/2
且:x1+x2=k +1=0 k=-1 (无解)
所以 k=3/2
3) ⊿=(k+1)²-4(1/4 k² +1)=k²+2k+1-k²-4=2k-3>0
k>3/2 (1)
x1+x2=k +1>0 k>-1 (2)
x1*x2=1/4 k² +1>0 k为任意实数 (3)
由(1)(2)(3) 得 k>3/2
4) A)⊿=(k+1)²-4(1/4 k² +1)=k²+2k+1-k²-4=2k-3>0
k>3/2 (1)
B) 原方程配方得:x²-(k+1)x+1/4*(k+1)²-1/4*(k+1)²+1/4 k² +1
=[x-1/2(k+1)]²-1/4k²-1/2k-1/4+1/4k²+1
=[x-1/2(k+1)]²-1/2k+3/4
对称轴为x=-1/2(k+1)
因为两根分别为0<x1<1 2<x2<3 所以
对称轴为x=1/2(k+1) 在 1跟2之间
即:1<1/2(k+1)<2
2<k+1<4 1<k<3 (2)
C) X2-X1>1
(X2-X1)²>1
X2²+X1²-2X1X2>1
(X1+X2)²-4X1X2>1
x1+x2=k +1 x1*x2=1/4 k² +1
(K+1)²-K²-4>0
K²+2K+1-K²-4>0
2K-3>0
K>3/2 (3)
由(1)(2)(3) 得 3/2<K<3