在梯形ABCD中,AD//BC,∠A=90°,CD=AD+BC,E为AB的中点,求证:E到CD的距离等于AB的一半

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:36:38
在梯形ABCD中,AD//BC,∠A=90°,CD=AD+BC,E为AB的中点,求证:E到CD的距离等于AB的一半
xRN0~Y2 ڲ  @ĈCP7s.QuW{ MۿV*X{L!oaW|.=0#--,$KTB"[cL U`h'2I'g~RAcO:C[iѭҋBzS|p07@$ 0KVUgj 7W")CAr\cyG~KE2,'Hv

在梯形ABCD中,AD//BC,∠A=90°,CD=AD+BC,E为AB的中点,求证:E到CD的距离等于AB的一半
在梯形ABCD中,AD//BC,∠A=90°,CD=AD+BC,E为AB的中点,求证:E到CD的距离等于AB的一半

在梯形ABCD中,AD//BC,∠A=90°,CD=AD+BC,E为AB的中点,求证:E到CD的距离等于AB的一半
证明:过点E作EF⊥CD于F,连接CE并延长CE交DA的延长线于点G,连接DE
∵AD//BC
∴∠G=∠BCE,∠GAB=∠CBE
∵E是AB的中点
∴AE=BE=AB/2
∴△AGE≌△BCE (AAS)
∴AG=BC,GE=CE
∴GD=AD+AG=AD+BC
∵CD=AD+BC
∴GD=CD
∴DE平分∠ADC (三线合一)
∵∠A=90,EF⊥CD
∴EF=AE=AB/2 (角平分线性质)
数学辅导团解答了你的提问,