定积分上限为0下限为-13x^4+3x^3+1/x^2+1dx的第一步=[0,-1]3x^2+1/x^2+1dx怎么来的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:40:39
定积分上限为0下限为-13x^4+3x^3+1/x^2+1dx的第一步=[0,-1]3x^2+1/x^2+1dx怎么来的
x){nv=r';v< aWęh cmC8#mÔZYdGóKm tt cR0x6w)PMR>/?u51րTa diƦT)TT(h#D 1TPVHL.*I̫ A*hjto7yPĵ/.H̳ m

定积分上限为0下限为-13x^4+3x^3+1/x^2+1dx的第一步=[0,-1]3x^2+1/x^2+1dx怎么来的
定积分上限为0下限为-13x^4+3x^3+1/x^2+1dx的第一步=[0,-1]3x^2+1/x^2+1dx怎么来的

定积分上限为0下限为-13x^4+3x^3+1/x^2+1dx的第一步=[0,-1]3x^2+1/x^2+1dx怎么来的
∫[-1,0][(3x^4+3x^2+1)/(1+x^2)]dx
=∫[-1,0] 3x^2dx +∫[-1,0] 1/(1+x^2)]dx
=x^3 | [-1,0] + acrtanx | [-1,0]
=0^3 - (-1)^3 +0-(-π/4)
=1+π/4