参数方程x=2t-1,te^y+y+1=0,求d^2y/dx^2 (x=0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:10:07
参数方程x=2t-1,te^y+y+1=0,求d^2y/dx^2 (x=0)
x){lgv>_]akTkSW]mhklcSJQ~JEFMR> lȴ+B?ARu]}%@]Oyo:H $4Dft0VPb³Ά'D+l 5vhTih!+6:B3[R 7"lDP6!>;gӷet^6-~nǶz6yv Ξ

参数方程x=2t-1,te^y+y+1=0,求d^2y/dx^2 (x=0)
参数方程x=2t-1,te^y+y+1=0,求d^2y/dx^2 (x=0)

参数方程x=2t-1,te^y+y+1=0,求d^2y/dx^2 (x=0)
dx/dt=2;
te^y+y+1=0,关于t求导,得e^y+te^y*(dy/dt)=0,得dy/dt=-1/t;
所以dy/dx=(dy/dt)/(dx/dt)=-1/(2t).
所以d^2y/dx^2=[d(dy/dx)]/dx={[d(dy/dx)]/dt}/(dx/dt)=[1/(2t^2)]/2=1/(4t^2).
当x=0时,t=1/2,那么d^2y/dx^2(x=0)=1.