线性代数:设三阶实对称矩阵A的秩为2设三阶实对称矩阵A的秩为2,r1=r2=6是A的二重特征值.若α1=(1,1,0)^T,α2=(2,1,1)^T,α3=(-1,2,-3)^T都是A的属于特征值6的特征向量.(1)求A的另一特征值及对应的特征向
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:45:51
xRN@- ?`Ƥ`XA`@hv/
!Gc2yo͌('+t^}7skSs-5YG!6zT?Svl) K9AJ.BJX R1/p< '~p:
yP%O\8因EyքD%wq79̀ f0sU
%Q9)"XX,*jǏz ;>{ٝ2n'FT~=ޠ
|UN#$)n="M*]&r}U6yLҙ#?;6+/ܢqHҤwXOC9{
tm
线性代数:设三阶实对称矩阵A的秩为2设三阶实对称矩阵A的秩为2,r1=r2=6是A的二重特征值.若α1=(1,1,0)^T,α2=(2,1,1)^T,α3=(-1,2,-3)^T都是A的属于特征值6的特征向量.(1)求A的另一特征值及对应的特征向
线性代数:设三阶实对称矩阵A的秩为2
设三阶实对称矩阵A的秩为2,r1=r2=6是A的二重特征值.若α1=(1,1,0)^T,α2=(2,1,1)^T,α3=(-1,2,-3)^T都是A的属于特征值6的特征向量.(1)求A的另一特征值及对应的特征向量(2)求矩阵A
线性代数:设三阶实对称矩阵A的秩为2设三阶实对称矩阵A的秩为2,r1=r2=6是A的二重特征值.若α1=(1,1,0)^T,α2=(2,1,1)^T,α3=(-1,2,-3)^T都是A的属于特征值6的特征向量.(1)求A的另一特征值及对应的特征向
秩是2,另一特征值是0.不同特征值的特征向量垂直,条件给了\alpha_1=(1,1,0),\alpha_2-\alpha_1=(1,0,1)是6的两个特征向量,所以(1,1,0)*(1,0,1)=(1,-1,-1) (叉乘)是0的特征向量.
第二问PAP^{-1} 死算,懒得算了……╮(╯▽╰)╭
线性代数 设A为n(n>2)阶实对称矩阵,A^2=A,秩(A)=r
关于线性代数的 对称矩阵和反对称矩阵的证明题 求救求救`~`(1)设A和B是2个对称矩阵 证A和B之和与差必为对称矩阵(2)设A和B是2个反对称矩阵 证A和B之和与差为必对称矩阵(3)设A和B是2个对称矩
高等代数(线性代数)设A为n阶实对称矩阵,证明:存在唯一n阶实对称矩阵B使得A=B的三次方求指导,
线性代数雨解析几何3.设A.C为阶正定矩阵, 设B是矩阵方程AZ+ZA=C的唯一解. 证明: (1) B 是对称矩阵; (2) B是正定矩阵.
线性代数,设A为3阶实对称矩阵,且满足R(A)=2,A2=A,求A的三个特征值.2,
线性代数,设A为3阶实对称矩阵,且满足R(A)=2,A2=A,求A的三个特征值.2,
设A为三阶对称矩阵,且满足A²+3A=0,已知A的秩为2,试问:当K为何值时,矩阵A+kE为正定矩阵快急
求解几道线性代数题目(1)设A,B都是n阶对称矩阵,则下列矩阵中()不是对称矩阵.(A)A^T B ,AB C, kA(k为常数) D A+B (2)设A是4×3矩阵,B是3×4矩阵,下列说法正确的是()A, AB的列向量组线性
设A,B为n阶矩阵,且A为对称阵,证明BTAB也是对称阵?线性代数的证明题!
大学题目 线性代数 设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0
线性代数关于对称矩阵的问题.若A,B均为nxn的矩阵,那么以下的矩阵是否必为对称矩阵或非对称矩阵?(1)ABA (2)AB+BA
设A为可逆对称矩阵,证明 (1)A^(-1)为对称矩阵 (2)A*为对称矩阵
考研数学三:线性代数矩阵和秩的问题 设A是m*n矩阵,r(A)=m
一道线性代数矩阵的题,设A为3阶矩阵,|A|=1/2,求|(2A)^(-1)-5A*| 线性代数矩阵知识!
线性代数 矩阵的相似变换设A是n阶实对称矩阵,满足A^2=A,且rankA=r(r
{{{线性代数}}}两道线性代数题,第一题:设A的k次幂等于零矩阵(k为正整数),证明:(E-A)的逆矩阵=E+A+A的2次方+A的三次方+...+A的k-1次方.其中A.E分别为一个矩阵和单位矩阵.第二题:设方阵A
设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵
设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵