已知数列{an}中(1)a1=1,且anan+1=2^n,求通项公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:02:14
已知数列{an}中(1)a1=1,且anan+1=2^n,求通项公式
xJ@_eFBO͋H ,AEb1E$S*[6ѧn)&ib/CoX͖}G3掻&4]=DǺD>Pϳ^=Xb::V@slR= b*1v ؐn})>n]2{ណ; Z"GZYz{>rwN/DkvKB #\[F 釒BZڸۅsAg6taLl:N KS6wQҲP\%F5BB.V3w&ֆfCH| 2&DɈwF@a"aże]ɻ m

已知数列{an}中(1)a1=1,且anan+1=2^n,求通项公式
已知数列{an}中(1)a1=1,且anan+1=2^n,求通项公式

已知数列{an}中(1)a1=1,且anan+1=2^n,求通项公式
由题意:n=1时,a2*a1=a2*1=2,即a2=2
n=2时,a2*a3=4,即a3=2
当n>=2时,
anan+1=2^n
an-1 an=2^(n-1)
故an+1/an-1=2
所以隔项成等比数列
当n为偶数时,an=a2*2^(n/2 -1) =2^(n/2)
当n为奇数时,an=a3*2^[(n-1)/2 -1]=2^[(n-1)/2]
又n=1时符合式子2^[(n-1)/2]
故通项公式为:
an=2^[(n-1)/2](n为奇数);an=2^(n/2)(n为偶数)

anan+1=2^n
an-1an=2^(n-1)
an+1=2an-1
又a1=1 得到a2=2 a3=2
2^[(n-1)/2],n为奇数
an={
2^(n/2) ,n为偶数

anan+1=2^n anan=2^n-1 an=根号下2^n-1