已知a、b、c∈R+,求证:a^12/bc+b^12/ca+c^12/ab=a^10+b^10+c^10 用排序不等式解答中间是“大于等于”
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:26:52
xŐO
@Ư^Ism3XE!""6ExqtzE7o}ymo1R2(gD톡a` R75œ,cɤ8xgQXnLY<NM~^%|@-(N)CL@ªl"$/6l`3KgMKj`lԱĦ^ɀ|
已知a、b、c∈R+,求证:a^12/bc+b^12/ca+c^12/ab=a^10+b^10+c^10 用排序不等式解答中间是“大于等于”
已知a、b、c∈R+,求证:a^12/bc+b^12/ca+c^12/ab=a^10+b^10+c^10 用排序不等式解答
中间是“大于等于”
已知a、b、c∈R+,求证:a^12/bc+b^12/ca+c^12/ab=a^10+b^10+c^10 用排序不等式解答中间是“大于等于”
设a≥b≥c,则bc≤ca≤ab,a^12≥b^12≥c^12,a^2≥b^2≥c^2
由顺序≥逆序得,a^12/bc+b^12/ca+c^12/ab≥a^12/a^2+b^12/b^2+c^12/c^2=a^10+b^10+c^10 .
已知a,b,c∈R,求证(a²/b)+(b²/c)+(c²/a)≥a+b+c已知a,b,c∈R*,求证(a²/b)+(b²/c)+(c²/a)≥a+b+c
已知a、b、c、d∈R+,求证1
已知a,b,c∈R,求证(a+b+c)^2≥(ab+bc+ac)
已知abc∈R,求证b^2/a+c^2/b+a^2/c≥c√b/a+a√c/b+b√a/c已知a,b,c∈R,求证b^2/a+c^2/b+a^2/c≥c√b/a+a√c/b+b√a/c错了 a,b,c∈R+
已知a,d∈R+,b,c∈R,a>b,b>c+d,求证:ab>ac+bd
已知a,b,c=R+ ,求证:(a+b)*(a+c)*(b+c)>=8abc
已知a、b、c∈R*,求证a+b+c+1/a+1/b+1/c≥6
已知a,b,c∈R+,a+b+c=1,求证bc/a+ac/b+ab/c>=1
已知a,b,c∈R+,求证:(a+b)(b+c)(a+c)≥8abc
已知a,b,c,∈R+.求证bc/a+ac/b+ab/c≥a+b+c
已知a,b,c∈R+,求证:(a/b+b/c+c/a)(b/a+c/b+a/c)>=9
已知a、b、c∈R,求证a^2+b^2+c^2+4>=ab+3b+2c
已知a、b、c∈R+,求证:a^12/bc+b^12/ca+c^12/ab>=a^10+b^10+c^10,用排序不等式解答
已知a,b∈R求证:a^2 + b^2 + a*b +1 > a + b
已知a、b、c∈R,且a+b+c=2,a+b+c=2,求证:a、b、c∈[0,4/3]
已知a,b,c,∈R,求证:a^2b^2+b^2c^2+c^2a^≥abc(a+b+c)
已知a,b,c∈R+,求证:a(b²+c²)+b(c²+a²)+c(a²+b²)≥6abc
已知a,b,c∈R+ ,求证:b²/a+c²2/b+a²/c≥√[3(a²+b²+c²)]