求摆线x=a(t-sin⁡t ),y=a(1- cos⁡t),(0 ≤t≤2π) 绕x 轴和绕y 轴的旋转体体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 09:08:22
求摆线x=a(t-sin⁡t ),y=a(1- cos⁡t),(0 ≤t≤2π) 绕x 轴和绕y 轴的旋转体体积
xJ@_%P(m׵V[EJ^bBQ?EЫAA!Wpf7hBvYoGAk]?EO_&>h9LgɎóScô&ӓH-sQ3?ϕk j;]rau24vQ7Q.MP"~IQdډ!x+g,36WU/3%@+↯[%  Lz ),AbI 1Ls[[BjR')JQfX/3H'-Ao vv

求摆线x=a(t-sin⁡t ),y=a(1- cos⁡t),(0 ≤t≤2π) 绕x 轴和绕y 轴的旋转体体积
求摆线x=a(t-sin⁡t ),y=a(1- cos⁡t),(0 ≤t≤2π) 绕x 轴和绕y 轴的旋转体体积

求摆线x=a(t-sin⁡t ),y=a(1- cos⁡t),(0 ≤t≤2π) 绕x 轴和绕y 轴的旋转体体积
∵x=a(t-sint ),y=a(1- cost),(0 ≤t≤2π)
∴dx=a(1-cost)dt
故 绕x轴的旋转体体积=∫πy²dx
=π∫[a(1- cost)]²*a(1-cost)dt
=πa³∫[5/2-3cost+3cos(2t)/2-(1-sin²t)cost]dt
=πa³[5/2-3sint+3sin(2t)/4-(sint-sin³t/3)]│
=πa³[(5/2)(2π)
=5π²a³;
绕y轴的旋转体体积=∫2πxydx
=2π∫a(t-sint )*a(1- cost)*a(1-cost)dt
=2πa³∫(t-sint )(1- cost)²dt
=2πa³[t(3t/2-2sint+sin(2t)/4)-(3t²/4+2cost-cos(2t)/4)-(1-cost)³/3]│
=2πa³(6π²-3π²)
=6π³a³.