已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a=1,求证f(x)>g(x)+1/2 具体来

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:47:05
已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a=1,求证f(x)>g(x)+1/2 具体来
xN1_k"T2͡BQ{qCڐR RDU mtI;W೷l#Uꑛ=3}٫ts㎞;˯744>N0;x^-DkFǹ2Q6U`fE(msWP&3_Nou{\eH4=tbYq1(f4~vS0 H%Z /\ns7,^P`h=]Lz̒ u/Q4l@ͧ sШGA$p˹Y0(XaˬNyVv+e5E~I<Ź` b>Dc}f (߿

已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a=1,求证f(x)>g(x)+1/2 具体来
已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a=1,求证f(x)>g(x)+1/2 具体来

已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a=1,求证f(x)>g(x)+1/2 具体来
证明:
f(x)=x-lnx;
求导,得1-1/x;
令其等于0;可得x=1;便可知道,在(0,1]函数f(x)单调减,在[1,e]函数f(x)单调增,也即在x=1处是f(x)的最小值,f(x=1)=1-ln1=1.
同理对g(x)求导,得(1-lnx)/(x*x);
令其等于0;可得x=e;函数g(x)在(0,e]区间单调增;也就是说在x=e处函数g(x)取得最大值.g(x=e)=lne/e=1/e;
而e>2;也即1/e+1/2g(x)+1/2;得证!

先写成x-lnx-lnx/x>1/2,令h(x)=x-lnx-lnx/x
对h(x)求导,再求h(x)的增减性
求出最小值和1/2比较

已知函数f(x)=ax+lnx(a属于R)求f(x)的单调区间. 已知函数f(X)=ax^2+2lnx,(a属于R),讨论函数f(X)的单调性 已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a=1,求证f(x)>g(x)+1/2 具体来 已知函数y=f(x)是奇函数,当x属于(0,2)时f(x)=lnx-ax(a>1/2),当x属于(-2,0)时f(x)的最小值为1 , 函数F(X)=ax-lnx 已知函数f(x)=x^2+lnx-ax(a属于R)在(0,1)上是增函数,求a的取值范围 已知函数f(x)满足2f(x+2)=f(x)当x属于(0,2)时,f(x)=lnx+ax(a根号x对于x属于(0,1)U(1,2)时恒成立 已知函数f(x)满足2f(x+2)=f(x),当x属于(0,2)时,f(x)=lnx+ax(a根号x对于x属于(0,1)U(1,2)时恒成立 已知函数f(x)=ax-a/x-2lnx 已知f(x)=lnx-1 x≥1,-x²+ax,x 已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a=1,求证f(x)>g(x)+1/2(2)令h(x)=f(x)-g(x)-1/2=x-lnx-lnx/x-1/2h′(x)=(x²-x+lnx-1)/x²令H(x)=x²-x+lnx-1则H′(x)=2x-1+1/x=(2x²-x+1)/x>0易知H(1)=0故当0 已知f(x)=ax+(a-1)/x+2a-1,其中a>0,g(x)=lnx.(1)若f(x)≥g(x),在x属于[1,+无穷大)恒成立,已知f(x)=ax+(a-1)/x+2a-1,其中a>0,g(x)=lnx.(1)若f(x)≥g(x),在x属于[1,+无穷大)恒成立,求正数a的取值范围.(2)求证:当x>0 已知F(x)是定义在[-e,0)u(0,e]上的奇函数,当x属于(0,e]时,F(x)=ax+2lnx (a 已知函数f(x)=lnx-ax²/2+x.a属于R.求函数f(x)的单调区间 只限今天已知函数f(x)=lnx-ax(a属于R)求函数f(x)单调区间. 已知函数f(x)=lnx-ax+ (1-a)/x-1已知函数f(x)=lnx-ax (1-a)/x-1(1)a= 已知函数,g(x)=x/lnx,f(x)=g(x)-ax 若存在x1,x2属于[e,e^]使f(x1)0)成立,求a的范围已知函数,g(x)=x/lnx,f(x)=g(x)-ax 若存在x1,x2属于[e,e^]使f(x1)0)成立,求a的范围 已知函数f(x)x2+ax-lnx a属于R 当a=1已知函数f(x)=x2+ax-lnx a属于R 当a=1时,求函数f(x)的单调区间