证明n维矩阵存在n个线性无关列向量,则矩阵满秩要科学的证明过程,谢谢

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:33:32
证明n维矩阵存在n个线性无关列向量,则矩阵满秩要科学的证明过程,谢谢
xTNAa挐D98a:&!,fMLm `?š^/m%RH=t{UUkni^6>|kqxZ+nк|\= ײ4wEB>Oڕ&t_Ch34?_.#VXv[Yv5&.]ad[d䕰{n ۈ҄"I+5&$ PDRyNRUA( JE@ H"X7fY9hg(V*rO8 oAW? ,@΢Rڐ`-U|͠ Lc&xKtjIAT9"ϋ<{o$MeK`R?O@@dd=iR8ԒpKLb+ 79b/(}|$^L3EXn ',\@ @󍨋Qup݋+9(P訩O:eaSELhe\YG: )m8 Z zۢW`p"ބlؓ۔$k~U៲\FˉNq)#ѾJ?ﲮGXa1tĶb?6ԦG=IL ׿Io6XM%YpNƔ;Q|6oЇ 6~96;Xj3ͪIW]ըz^+$טJji:ǟR!^)Mg(~tAOFP;^=<36͋U[; &WnIh9hYl˵Kvs37n)Ϋ c

证明n维矩阵存在n个线性无关列向量,则矩阵满秩要科学的证明过程,谢谢
证明n维矩阵存在n个线性无关列向量,则矩阵满秩
要科学的证明过程,谢谢

证明n维矩阵存在n个线性无关列向量,则矩阵满秩要科学的证明过程,谢谢
用反证法证明.设A=﹙α1,α2,……αn﹚是n阶降秩矩阵,αj=﹙a1j,a2j,……anj﹚' 是第j列列向量.设r﹙A﹚=r<n 则存在A的r阶子式D≠0,而阶大于r的子式全都等于零.为了方便,可设D为
左上角的一个r阶子式.看下面的n个r+1阶行列式 Mi ﹙i=1,2,……n﹚
Mi=
| a11 a12 ……a1r a1﹙r+1﹚|
| a21 a22 ……a2r a2﹙r+1﹚|
|………………………………… |
i| ar1 ar2………arr ar﹙r+1﹚|
| ai1 ai2 ………air ai﹙r+1﹚|
①当1≤i≤r时,Di有两行相同,Di=0,
r<i≦n时 Di是A的r+1阶子式,Di=0
即这n个r+1阶行列式 Mi 全部都等于零.
②这n个r+1阶行列式 Mi ,它们的第r+i行元素的r+1个代数余子式,只与元素位置有关,而与i无关,记为C1,C2,……Cr,D,[注意最后一个正是那个D≠0]
把Mi按第r+i行展开,得到 ai1C1+ai2C2+……+airCr+ai﹙r+1﹚D=0
或者C1ai1+C2ai2+……+Crair+Dai﹙r+1﹚=0
让i从1跑到n.即得到C1α1+C2α2+……+Crαr+Dα﹙r+1﹚=0﹙零向量﹚
C1α1+C2α2+……+Crαr+Dα﹙r+1﹚+0α﹙r+2﹚+……+0αn=0﹙零向量﹚
注意D≠0 上时说明α1,……,αn线性相关,与A的列向量线性无关矛盾,∴矩阵A满秩.
[这类问题属于“基本理论”,每本教材都有论述.应该自己查课本.]

证明n维矩阵存在n个线性无关列向量,则矩阵满秩` 证明n维矩阵存在n个线性无关列向量,则矩阵满秩要科学的证明过程,谢谢 线性代数的题目设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m)设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A 设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.证明向量Aα1,Aα2,…Aαn线性无关. 证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关. 证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关. 设m*n矩阵A中的n个列向量线性无关,R(A)=? 设A B分别为m×n,n×m矩阵,n>m,AB=Em,证明B的m个列向量线性无关 证明矩阵列向量组线性无关 设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且B的转置乘以A=0,B下面好像有个下标是n(n-s) 一个线性代数证明题!设A为n×m矩阵,B为m×n矩阵,n小于m,若AB等于E,证明B的列向量组线性无关.证明B的列向量组线性无关 一道线性代数习题证明对任意的m>n,存在m个n维向量,使得任意n个向量线性无关.是使其中任意n个都线性无关 线性无关证明设A是n阶矩阵,b1、b2、b3是n维列向量,若Ab1=b1≠0,Ab2=b1+b2,Ab3=b2+b3,证明b1,b2,b3线性无关. 设矩阵A=(a)m*n的秩为r,则下列说法正确的是A 矩阵A存在一个阶子式不等于零B 矩阵A的所有r,1阶子式全为零C 矩阵A存在r个列向量线性无关D 矩阵A存在m-r个行向量线性无关 由n个线性无关向量作为列组成的矩阵秩为n…秩和线性无关什么关系?高手点播… 线性代数 向量线性无关问题A选项n*m矩阵 设m<=n (也就是说向量个数<维数)则这m个列向量线性无关的充要条件是r(A)=m即列满秩矩阵但是这里是m*n 共有n个列向量这里只是行满秩 应该是 设A为m×n矩阵,B为n×s矩阵,已知A的列向量组线性无关,证明:B与AB有相同的秩. 设A为m×n矩阵,B为n×s矩阵,已知A的列向量组线性无关,证明:B与AB有相同的秩