求极值 lim(n->无限) [n(n+1)(2n+1)]/6n^2如题,..

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:48:22
求极值 lim(n->无限) [n(n+1)(2n+1)]/6n^2如题,..
xRN@m- ?B ѝN@!H4x$V44h0?Sgt"Rq1sssԤΞNQcJ5b$2( J8n?1}'%u?}=rvWh  EL"XQ,~W"jԁ/jp7+>&ױ>/pf6-Y@<+up"23dPH%!&/;yHjm;}&c~v/-P F`/Z'\wW&,N)+ [4ތ4-֩sF5־a"5YӁxQрUz5BL5vj

求极值 lim(n->无限) [n(n+1)(2n+1)]/6n^2如题,..
求极值 lim(n->无限) [n(n+1)(2n+1)]/6n^2
如题,..

求极值 lim(n->无限) [n(n+1)(2n+1)]/6n^2如题,..
lim(n→∝) [n(n+1)(2n+1)]/6n^2
=lim(n→∝) [(n+1)(2n+1)]/6n
=lim(n→∝) (2n^2+3n+1)/6n
=lim(n→∝) (n/3+1/2+1/6n)
lim(n→∝) (1/2+1/6n)=1/2
lim(n→∝) (n/3)=∝
所以lim(n→∝) [n(n+1)(2n+1)]/6n^2=∝

lim[n(n+1)(2n+1)]/6n^2
分子分母同时除以n^3
=lim[(1+1/n)(2+1/n)]/(6/n)
其中分母[(1+1/n)(2+1/n)]趋于2,分子6/n趋于0
所以整体趋于∞
也即lim[n(n+1)(2n+1)]/6n^2
=lim[(1+1/n)(2+1/n)]/(6/n)=∞

分子比分母高了一次,所以极限是无穷大。另外你注意到此题的特殊性了吗:[n(n+1)(2n+1)]/6=1^2+2^2+3^2+…+n^2.