cos^3+sin^3 求化简设t=cos+sin
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 13:38:18
x)K/3.̋3Vxiϴ^Wb$JΆX4
BSMMI "2@`e:`,Lc9 Qa XΆ'bՏRKk]4uKH WQEc.^]uƕ (7,Hȴ/.H̳F
dǮ'ڞMd~g^Dp+$قRPHLHNҌ357BO7t5
4m4|(PŔZ$ V
cos^3+sin^3 求化简设t=cos+sin
cos^3+sin^3 求化简设t=cos+sin
cos^3+sin^3 求化简设t=cos+sin
(cosx+sinx)³=(cosx+sinx)²(cosx+sinx)
=(cosx²+sinx²+2cosxsinx)(cosx+sinx)
=cosx³+sinx³+3cosx²sinx+3cosxsinx²
所以cosx³+sinx³=(cosx+sinx)³-3cosx²sinx-3cosxsinx²
=(cosx+sinx)³-3cosxsinx(cosx+sinx)
=(cosx+sinx)³-3/2[(cosx+sinx)²-cosx²-sinx²](cosx+sinx)
=t³-3/2(t²-1)t
=-1/2t³+3/2t
为了方便 我们设a=cosx b=sinx ab=[(a+b)^2-1]/2
cos^3+sin^3=(a+b)(a^2-ab+b^2)=(a+b)(1-ab)=(a+b){1-[(a+b)^2-1]/2}