求y=sin2x+2倍根号2cos(π/4+x)+3的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:31:46
求y=sin2x+2倍根号2cos(π/4+x)+3的最小值
xn@_% *:s6[{@cSXYdYTPXh-.m+U, 4IU,sohi}<а(ޔ7'6P5U'cQL.XyH{;w] H#5VIfӳy+d)f7'nYoKV(;(N$Ob';EsgO!\lAo]jQpRahAr8gš Mo;&GadmM 6 CHyJ+J^ BqB<cP{Nf|Ie

求y=sin2x+2倍根号2cos(π/4+x)+3的最小值
求y=sin2x+2倍根号2cos(π/4+x)+3的最小值

求y=sin2x+2倍根号2cos(π/4+x)+3的最小值

y=sin2x+2√2cos(π/4+x)+3
=cos(2x-π/2)+2√2cos(π/4+x)+3
=1-2sin²(x-π/4)-2√2sin(x-π/4)+3
=4-2[sin²(x-π/4)+√2sin(x-π/4)]
令sin(x-π/4)=t,则-1≤t≤1于是
y=4-2(t²+√2t)
y=4-2(t²+√2t+1/2)+2*1/2
=4-2(t-√2/2)²+1
=5-2(t-√2/2)² (-1≤t≤1)
当t=-1时,函数取得最小值
4-2[(-1)²+√2*(-1)]
=4-2(1-√2)
=2-2√2
所以最小值为2-2√2