关于多元函数极值与最值的理解问题我们知道对二元函数:在唯一驻点处取极值不一定是最值如:Z=f(x,y)=x^3-4x^2+2xy-y^2在 -6≤x≤6 -1≤y≤1上f(0,0)=0是极大值 当然(0,0)&(2,2)都是驻点,但(2,2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:45:28
关于多元函数极值与最值的理解问题我们知道对二元函数:在唯一驻点处取极值不一定是最值如:Z=f(x,y)=x^3-4x^2+2xy-y^2在 -6≤x≤6 -1≤y≤1上f(0,0)=0是极大值 当然(0,0)&(2,2)都是驻点,但(2,2
xTRP~:: (OЅ3vs]A""hJZM߻8$+^@;¶.rs};_[U .? P;v%nr?k_ɬ8Tz{Ѷ7M+ {hUN)9:, DJ$.*XK =@ 1c{ybZ OZX];rtà»A' Y'7@$n.߯O4U;!Ɵ I 3PC2A*k70eH=Y> BG'̰c%u~ybV@TfvЩI *kbq?( GlEe c1f{l{iN>v~o|KB$!Д"f<Qf+ʫi|C23 4o]!*Cz kwT235!.@-oSoG$' VI=j˒`p~jma_PuHX۲CAG9tOqn7 L MW/8Dv|2jg ]5-7dؽA/T O*N9lZuO S䩼z4T:ǧ@Ðx45E3y$a9ۅK+K+;EȿlN,e!"Op}z0NeNx{hopܪ47]N,˺,pڢU Г25p c1xH~\[Z]"

关于多元函数极值与最值的理解问题我们知道对二元函数:在唯一驻点处取极值不一定是最值如:Z=f(x,y)=x^3-4x^2+2xy-y^2在 -6≤x≤6 -1≤y≤1上f(0,0)=0是极大值 当然(0,0)&(2,2)都是驻点,但(2,2
关于多元函数极值与最值的理解问题
我们知道
对二元函数:在唯一驻点处取极值不一定是最值
如:Z=f(x,y)=x^3-4x^2+2xy-y^2在 -6≤x≤6 -1≤y≤1上
f(0,0)=0是极大值 当然(0,0)&(2,2)都是驻点,但(2,2)不在定义域内
所以是唯一驻点,但显然不是最值点
因为举个例子f(5,0)=25就> f(0,0)
但是另一个例子中:
求曲线y=x^2 与直线x-y=2之间的最短距离
过程就不赘述了 最后求得 (1/2,1/4)为驻点
这个问题本身有最小值,且函数只有一个驻点,所以驻点的函数值必为最小值
为什么二元函数中有时候极值是最小值,而有时候不是
这个“度”怎么理解
..

关于多元函数极值与最值的理解问题我们知道对二元函数:在唯一驻点处取极值不一定是最值如:Z=f(x,y)=x^3-4x^2+2xy-y^2在 -6≤x≤6 -1≤y≤1上f(0,0)=0是极大值 当然(0,0)&(2,2)都是驻点,但(2,2
1.原则上,求出所有驻点,不可导的点,以及边界点,比较各点处的函数值,
最大的和最小的选出来,即可.
2.求曲线y=x^2 与直线x-y=2之间的最短距离……
如果你化成一元函数的无条件极值,可以判断这是唯一的极值,且是个极小值,故该点处取得最小值.
如果你使用Lagrange条件极值的方法,判断这是唯一的一个条件极值点,问题本身有最小值,故在该点取得最小值.( 因为在无穷远处,距离是无穷大.)
这时需要问题的实际背景,的确不是太严密,因为我们通常并不考虑它是条件极大或极小.