如图,在四边形ABCD中,∠ABC=∠ADC=90°E和F分别是对角线AC和BD的中点,求证:EF⊥BD提示:连接DE和BE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:50:34
xSAn@
0.Fxƻ"7hP0LDAҠHQBPP͊+c;vEdif
Tg;YM\EKɵUkfæά=f]Έ&C:W5#w@_H|\F%?@)~0aD/?SQ&rRZ"!O5J}_ );3`Neª&8ed?>%<{?h:U+&o( v=ʀbDDkYE8C?٦6V \\t&~ʯ_TbgM]61oTT-N g*ά{(x#]zo1wKJڣoFqG{Z:M19M_0(c"ԩ4364)`(N#r-%
d ªr͐\]uᲤhRdf7% Q+ӓ:7HX,Ҝ;C6~'XL>c
如图,在四边形ABCD中,∠ABC=∠ADC=90°E和F分别是对角线AC和BD的中点,求证:EF⊥BD提示:连接DE和BE
如图,在四边形ABCD中,∠ABC=∠ADC=90°
E和F分别是对角线AC和BD的中点,求证:EF⊥BD
提示:连接DE和BE
如图,在四边形ABCD中,∠ABC=∠ADC=90°E和F分别是对角线AC和BD的中点,求证:EF⊥BD提示:连接DE和BE
连接DE和BE
因为∠ABC=∠ADC=90°
所以△ABC,△ADC都是Rt△
又因为E是AC中点
所以BE,DE分别是Rt△ABC和Rt△ADC斜边上的中线
所以BE=AC/2=DE
所以△BED是等腰三角形
而F又是BD中点
由三线合一知
EF是高线
所以EF⊥BD
连接DE和BE
∵,∠ABC=900,AE=EC
∴BE=1/2AC
同理 DE=1/2AC
∴BE=DE
又BF=DF
∴EF⊥BD
你的图呢?。。。。
证明:连接MB、MD。
∵M是AC的中点,∠ABC=90°
∴MB是Rt△ABC斜边上的中线
∴MB=AM
同理,MD=AM
∴MB=MD
又∵ N是BD的中点
∴BN=DN又MN=MN
根据“边边边”定理
∴△MBN≌△MDN
∴MB=MD,
△MBD是等腰三角形。
∴MN是等腰△MBD的中线
全部展开
证明:连接MB、MD。
∵M是AC的中点,∠ABC=90°
∴MB是Rt△ABC斜边上的中线
∴MB=AM
同理,MD=AM
∴MB=MD
又∵ N是BD的中点
∴BN=DN又MN=MN
根据“边边边”定理
∴△MBN≌△MDN
∴MB=MD,
△MBD是等腰三角形。
∴MN是等腰△MBD的中线
∴MN⊥BD
收起
(勾股定理)如图,在四边形ABCD中,AB=AD=5,∠A=90°,∠ABC=135°,四边形ABCD的周长为20,求四边形ABCD的面积(根号2约等于1.4)
如图在四边形abcd中,对角线BD平分∠ABC,AD=CD,AB
如图,在四边形ABCD中,∠A=∠ABC=90°,BD=CD,E是BC的中点,求证:四边形ABED是矩形
如图,在四边形ABCD中,AB=CD,∠A=∠C,四边形ABCD是平行四边形吗?为什么
如图,在四边形ABCD中,∠ABC=∠ADC=90,∠C=45,BC=4,AD=2求四边形ABCD的面积
如图 在四边形abcd中ad平行bc,AD=2cm,BD平分∠ABC,∠ABC=∠C=60°求1.四边形ABCD的周长2.四边形ABCD的面积快
已知:如图,在四边形ABCD中,BD平分∠ABC,AB
如图,已知在四边形ABCD中,∠A+∠B=180°,∠B
如图,在四边形ABCD中,AE,BF分别平分∠BAD,∠ABC,求证:四边形ABEF是菱形.
已知:如图,在四边形ABCD中,∠A=∠C,∠ABC=∠ADC.求证:(1)DC‖AB()△ABD≌△CDB.
如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,判断BE,DF是否平行
如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证,BE平行DF
如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试说明BE‖DF.
已知:如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°
已知 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC,求证∠A+∠C=180o
如图,已知在四边形ABCD中,BC大于BA,AD=CD,BD平分∠ABC,求证∠A+∠C=180°
如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC.求证:∠A+∠C=180°
已知,如图,在四边形ABCD中,BC>AD,AD=DC,∠A+∠C=180°,求证:BD是∠ABC的平分线