悬赏将升90分,一道关于四面体和计数原理的数学题注意(1)和( 2)两题同图.(1)四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有多少种不同取法?(1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:35:31
悬赏将升90分,一道关于四面体和计数原理的数学题注意(1)和( 2)两题同图.(1)四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有多少种不同取法?(1)
xTnWRDLeR9VP06 * c!IClRFX`0~ u%0sk>{OFYS}Vts'TR Xw%M-{%}a[*tM'쮲q`۪Lz4$#-]?8@Rݿ~9%M\fͮZUR?sLh&@ iSXB$P.X4=ڥ\d7LުexnIQBV**!J&Z;Ln3g]Mˤ2 v`2FohjmyWxD4k-H3F)xZk &Zw!|K;5$a @=G%g,Dx=cP `D;al N\n >:AF4~|,,[Z|vpdnqi12+8e.l)_ixOEw4tH QuS f@5C6!S 'LS(]'{"yLMt]TE0.ڀW%]փ2=^oPQ%P' C2? rGM'Nwȁzǃt{I4` w L4vV*솢%7,=N f&cYIs!q8x=v!%Ip 3l"Jft+Un-IN$q /}QTqi[Z|TȠ3rMZ4*!UAY(+Wn !Y68B7~H3=)Mxt C'9ʏ*.@bK?,K V)qXZ%V9X#0])b< mvyjϢQsņ;1Zno"# ;6Ify2Md5\nmWw!т'/1o2В%OKIw4/8#~c

悬赏将升90分,一道关于四面体和计数原理的数学题注意(1)和( 2)两题同图.(1)四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有多少种不同取法?(1)
悬赏将升90分,一道关于四面体和计数原理的数学题
注意(1)和( 2)两题同图.
(1)四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有多少种不同取法?
(1)我的解题情况;老师黑板上写了3C(上3下5)+3 也就是n是5 m是3,我不懂为什么要+3
想得到的帮助:为什么要+3
(2)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,有几种不同的取法?
想得到的帮助:帮我解第二题

悬赏将升90分,一道关于四面体和计数原理的数学题注意(1)和( 2)两题同图.(1)四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有多少种不同取法?(1)
除点A外,还有9个点.
1、和点A在同一个平面内的面,可以分成在四面体内【如:A、E、B、N,共3个】和四面体侧面上的【如:在面ABC上的话,则可以在E、F、B、M个C中任意选三个就可以的,则在这个面内有C(3,5)种,三个侧面共有3C(3,5)种】,则满足要求的有:3C(3,5)+3
2、任意选4个点的选法有:C(4,10)=种,其中可能有共面的,也可能有不共面的,那只要将共面的剔除就可以了.共面的:①在四面体外侧面上的,如在面ABC中的话,在6个点中任意选4个都是共面的,共有C(4,6)种,则在外侧面上的共面的选法一共有4×C(4,6)=60种;②在四面体内部的.如图,可能是AEB【棱】和N【一侧棱一对边中点】,共6种;图中类似于EFNP的【异面直线的对棱型】,共3种.则不共面的四点的取法是210-60-3=147种