qiu zheng zui da de bu neng bei ax+by biao shi de shu shi :ab-a-bwo zai guo wai ,mei you zhong wen shu ru fa .shu lun wen ti .qiu zheng:zui da de bu neng bei ax+by biao shi de shu shi ab-a-b.GCD(a,b)=1.English:GCD(a,b)=1 show that ab-a-b is the large
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:09:45
qiu zheng zui da de bu neng bei ax+by biao shi de shu shi :ab-a-bwo zai guo wai ,mei you zhong wen shu ru fa .shu lun wen ti .qiu zheng:zui da de bu neng bei ax+by biao shi de shu shi ab-a-b.GCD(a,b)=1.English:GCD(a,b)=1 show that ab-a-b is the large
qiu zheng zui da de bu neng bei ax+by biao shi de shu shi :ab-a-b
wo zai guo wai ,mei you zhong wen shu ru fa .
shu lun wen ti .
qiu zheng:zui da de bu neng bei ax+by biao shi de shu shi ab-a-b.GCD(a,b)=1.
English:GCD(a,b)=1 show that ab-a-b is the largest value that cannot be written in the form ax+by.
a,b,x,y are non-neg int.
The largest number that cannot
qiu zheng zui da de bu neng bei ax+by biao shi de shu shi :ab-a-bwo zai guo wai ,mei you zhong wen shu ru fa .shu lun wen ti .qiu zheng:zui da de bu neng bei ax+by biao shi de shu shi ab-a-b.GCD(a,b)=1.English:GCD(a,b)=1 show that ab-a-b is the large
分两步做.
1.证明ab-a-b不能表示成ax+by的形式,其中x,y是非负整数.
注意到ab-a-b=a(b-1)+b(-1),从而满足ab-a-b=ax+by的一切整数x和y一定是如下形式
x=b-1-bt
y=-1+at
其中t取遍所有整数.
假定存在非负整数x,y满足上述条件,由y>=0得到t>=1,从而xab-a-b时一定存在ax+by型的表示.
由于a,b互质,存在整数u,v使得au+bv=1,从而a(nu)+b(nv)=n
存在唯一的整数t使得x=nu+bt满足0=ab-a-b-a(b-1)=-b
即y>-1,由此得到x和y都是非负整数.
你能写汉语吗?
拼音有歧义的!
我翻译不出来!
什么东西啊??
我好不容易才读懂,结果发现不会做...
应该是:
我在国外,没有中文输入法.
数论问题
求证:最大的不能被ax+by表示的数是ab-a-b.GCD(a,b)=1