令n趋近于无穷大,且n存在,求sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=?.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 18:36:18
令n趋近于无穷大,且n存在,求sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=?.
xnP_%cb7@Yɢ.*]P,)AiF$6 /; /B8رAj8g?38+Ge\V럵Ch)eTR]?.\2B4M&{HGd.Gϱ*Jʨh|:կq*B}=mvEp!|0Hz"펙 `%8əvT1cSFG4P-*B^*vY Zu k ]$9ZVB6 R=Hs0T3JDV֚{V:NάfqxZ YƗQ&-zakxl_:PO_1B,ƢL:#dcZ'p`m3*%>PdEY,@heŅ2/56G ;Xƹu"A+biVkw9.mDbw^Á\x߁~ ɮʺ`{ vT،7 m⁃ N FI?XBHmr8w 1|72d3rȽ|qa

令n趋近于无穷大,且n存在,求sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=?.
令n趋近于无穷大,且n存在,求sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=?.

令n趋近于无穷大,且n存在,求sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=?.
是下面这个题吧:
Lim(n→∞) (1/n)[sin(π/n)+sin(2π/n)+…+sin(nπ/n)]
观察:可以看出,实际上就是将区间[0,1]分成n等分,对函数y=sinπx.在每个区间点上求面积,然后求和.
很明显,由定积分的定义可知:
这和定积分∫sinπxdx x从0到1是等价的
所以
Lim(n→∞) (1/n)[sin(π/n)+sin(2π/n)+…+sin(nπ/n)]=∫sinπxdx
=-1/πcosπx|0,1
=2/π


设sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=A
对上式两边同时乘2sin[π/(2n)],则
左边第一项:
2sin[π/(2n)]·sin(π/n)=cos[π/n-π/(2n)]-cos[π/n+π/(2n)]=cos[π/(2n)]-cos[3π/(2n)]
左边第二项:
2sin[π/(2n)]·sin...

全部展开


设sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=A
对上式两边同时乘2sin[π/(2n)],则
左边第一项:
2sin[π/(2n)]·sin(π/n)=cos[π/n-π/(2n)]-cos[π/n+π/(2n)]=cos[π/(2n)]-cos[3π/(2n)]
左边第二项:
2sin[π/(2n)]·sin(2π/n)=cos[2π/n-π/(2n)]-cos[2π/n+π/(2n)]=cos[3π/(2n)]-cos[5π/(2n)]
左边第三项:
2sin[π/(2n)]·sin(3π/n)=cos[3π/n-π/(2n)]-cos[3π/n +π/(2n)]=cos[5π/(2n)]-cos[7π/(2n)]
……
左边第n项:
2sin[π/(2n)]·sin[(n)π/n]=cos[(nπ/n-π/(2n)]-cos[nπ/n+π/(2n)]=cos[(2n-1)π(2n)]- cos[(2n+1)π/(2n)]
故:2sin[π/(2n)]·[sin(π/n)+sin(2π/n)+......+sin(nπ/n)]
=cos[π/(2n)]-cos[(2n+1)π/(2n)]
=cos[π/(2n)]-cos[π+π/(2n)]
=2cos[π/(2n)]
故:2sin[π/(2n)][sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=2sin[π/(2n)]A
2cos[π/(2n)]=2sin[π/(2n)]A
A=cos[π/(2n)]/{sin[π/(2n)]}
=cot[π/(2n)]

收起