三角函数求解:若tanx=1/2,求sin^2x+2sinxsin(π/2-x)+3sin^2(3π/2-x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:00:59
x){IO>Ʀ3EҒļ
[C}#`qf^Q b
F`
c(&HP߅)[XC5$WUBD5p)2vCE *BE` _g
Ov/3k@v>eo
II]O9<]DT̀4a76ckhd$ف 4<
三角函数求解:若tanx=1/2,求sin^2x+2sinxsin(π/2-x)+3sin^2(3π/2-x)
三角函数求解:若tanx=1/2,求sin^2x+2sinxsin(π/2-x)+3sin^2(3π/2-x)
三角函数求解:若tanx=1/2,求sin^2x+2sinxsin(π/2-x)+3sin^2(3π/2-x)
sin^2x+2sinxsin(π/2-x)+3sin^2(3π/2-x)
=sin²x+2sinxcosx+3sin²(π/2-x)
=sin²x+sin2x+3cos²x
=1+2cos²x+sin2x
tanx=1/2
所以
|sinx|=√5/5
|cosx|=2√5/5
所以
上式=1+2×(4/5)+2×(√5/5)×(2√5/5)
=1+8/5+4/5
=17/5