cos4α+4cos2α+3=8(cosα)^4怎么证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:30:10
cos4α+4cos2α+3=8(cosα)^4怎么证明
cos4α+4cos2α+3=8(cosα)^4怎么证明
cos4α+4cos2α+3=8(cosα)^4怎么证明
右边=2*[2*(cosα)^2]*[2*(cosα)^2]
=2*[1+cos2α]*[1+cos2α]
=2(cos2α)^2+4cos2α+2
=cos4α+1+4cos2α+2
=cos4α+4cos2α+3
cos4α+4cos2α+3
=2cos^2(2a)-1 +4(2cos^2a-1)+3
=2(2cos^2a-1)^2-1+8cos^2a-4+3
=2(4cos^4a-4cos^2a+1)-1+8cos^2a-1
=8cos^4a-8cos^2a+2-1+8cos62a-1
=8cos^4a
就是你写的8(cosa)^4
证明:右边=2*[2(cosα)^2]*[2(cosα)^2]
=2*(1+cos2α)*(1+cos2α) cos2α=2(cosα)^2+1
= 2*[1^2+cos2α+cos2α+(cos2α)^2] 用乘法分配律
=2+...
全部展开
证明:右边=2*[2(cosα)^2]*[2(cosα)^2]
=2*(1+cos2α)*(1+cos2α) cos2α=2(cosα)^2+1
= 2*[1^2+cos2α+cos2α+(cos2α)^2] 用乘法分配律
=2+4cos2α+2(cos2α)^2 将2α看做一个整体α
=2+4cos2α+cos2*2α+1 代入cos2α=2(cosα)^2+1
=4cos2α+cos4α+3
=左边
收起