如图,△ABC中,∠C=90°,AB=6,AC=3,动点P在AB上运动,以点P为圆心,PA为半径画⊙P交AC于点Q. (1)比如图,△ABC中,∠C=90°,AB=6,AC=3,动点P在AB上运动,以点P为圆心,PA为半径画⊙P交AC于点Q.(1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:44:11
如图,△ABC中,∠C=90°,AB=6,AC=3,动点P在AB上运动,以点P为圆心,PA为半径画⊙P交AC于点Q. (1)比如图,△ABC中,∠C=90°,AB=6,AC=3,动点P在AB上运动,以点P为圆心,PA为半径画⊙P交AC于点Q.(1)
如图,△ABC中,∠C=90°,AB=6,AC=3,动点P在AB上运动,以点P为圆心,PA为半径画⊙P交AC于点Q. (1)比
如图,△ABC中,∠C=90°,AB=6,AC=3,动点P在AB上运动,以点P为圆心,PA为半径画⊙P交AC于点Q.
(1)比较AP,AQ的大小,并证明你的结论;
(2)当⊙P与BC相切时,求AP的长,并求此时弓形(阴影部分)的面积.
如图,△ABC中,∠C=90°,AB=6,AC=3,动点P在AB上运动,以点P为圆心,PA为半径画⊙P交AC于点Q. (1)比如图,△ABC中,∠C=90°,AB=6,AC=3,动点P在AB上运动,以点P为圆心,PA为半径画⊙P交AC于点Q.(1)
(1)AP=AQ,证明如下:(1分)
∵∠C=90°,AB=6,AC=3,
∴∠A=60°(2分)
连接PQ,
∴△PQA是等边三角形,即AP=AQ;(3分)
(2)当⊙P与BC相切时,如图,设切点为E,连接PE,则PE⊥BC,(4分)
∴PE∥AC,
∴∠EPB=∠A=60°,
∴PB=2PE=2AP(5分)
即AP=6÷3=2,(6分)
S弧=S扇形PQA-S三角形PQA= = .(8分)最后的你自己算吧,带面积公式就对了
(1)AP=AQ
(2)28
AP=AQ 因为根据已知条件可以得出AB是斜边即BC=5 及可以得出∠CBA=30°即∠BAC=60° 有应为P为圆点 PA为半近即三角形PQA为等边△ 即AP=AQ