f'(cosx+2)=sin2x+tan2x求f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:11:19
f'(cosx+2)=sin2x+tan2x求f(x)
xTn@Vbg$6dS"J=$ 颥vATʮ-B6|Jqa_`vҤTݲs̝ܩ٠G~Cg5{-FϨeg \Ur}<{L_"x[4Ԧi:>TI{8or4b<$> 'iF1k߳]z(X)ExttDoG Svj/գΎ[c<'| pF7CGTO@MmnA&Z6C.cFK+ JRd\偄B9k堸*u^B9˥%e7!@lb Bĭ IN'B!3Փ]HH4eT`D@UˎV6t  (/XIo V[NR [?8YM*2Y*ȯ?lQ__':D(

f'(cosx+2)=sin2x+tan2x求f(x)
f'(cosx+2)=sin2x+tan2x求f(x)

f'(cosx+2)=sin2x+tan2x求f(x)
令cosx+2=t
则cosx=t-2
∴san²x=1-(t-2)²,tan²x=sin²x/cos²x=1/(t-2)² -1
所以代入f′(t)=1/(t-2)²-(t-2)²
由1/x的导数为-1/x² 可推出 1/(t-2)²对应的原函数为-1/(t-2)
(t-2)²对应原函数为1/3·(t-2)³
∴f(t)=-1/(t-2) -1/3·(t-2)³
最后将t 换成x即可

f'(cosx+2)=[cos(2x)+1]/2+1/cos^2x-1=cos(2x)/2+(tanx)'-1/2=[sin(2x)/4]'+(tanx)'-[x/2]'
=[sin(2x)/4+tanx-x/2]'=[sinxcosx/2+sinx/cosx-x/2]'=[sinx(cos^2x+2)/(2cosx)-x/2]'
3>=cosx+2=t>=1,x=arccos(t...

全部展开

f'(cosx+2)=[cos(2x)+1]/2+1/cos^2x-1=cos(2x)/2+(tanx)'-1/2=[sin(2x)/4]'+(tanx)'-[x/2]'
=[sin(2x)/4+tanx-x/2]'=[sinxcosx/2+sinx/cosx-x/2]'=[sinx(cos^2x+2)/(2cosx)-x/2]'
3>=cosx+2=t>=1,x=arccos(t-2),cosx=t-2,cos^2x=(t-2)^2,sinx=|√[1-(t-2)^2]|
f'(t)=[sinx(cos^2x+2)/(2cosx)-x/2]'={|√[1-(t-2)^2]|[(t-2)^2+2]/[2(t-2)]-arccos(t-2)/2}'
f(t)=|√[1-(t-2)^2]|[(t-2)^2+2]/[2(t-2)]-arccos(t-2)/2+C

收起