A,B是椭圆x^2/a^2+y^2/b^2=1上两点,且OA垂直OB,求证1/OA^2+1/OB^2为定值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:31:18
A,B是椭圆x^2/a^2+y^2/b^2=1上两点,且OA垂直OB,求证1/OA^2+1/OB^2为定值
xUN@~*;vd*ƑHHqNHF*RiD!@!REB( !*lj=}S^?ciggۙL%SA^ R+Fȳ=;j8grKctt]ȫ1CZ!hE7!u7cўAUd3-ggmw!@&nKաZQ]YٗC $Sd+QgtSrT ɤ}X6RU 1'{<=[j!{ r  Rz.<>n^s:tS, ̋8D =ӥQÄ&@ATIY83kZVՊk" NPELqJ|&XyœVcPcj/%$K?%'|irr"== i9ĀU:*GOa?ϣq / ؐJ$oD( j%kX[[)-⺞w^?]Vֲlfu:Fy?]?q?N[y>00. ֨l[-/λlh,2;`K"y?h3u)V^~hOf6KP* O -?JQ nyA5X.BRŠKQfbZOՇA :3jEs^ڸB28 ߅G;Уfÿ8o۽kF2{DhFMi1

A,B是椭圆x^2/a^2+y^2/b^2=1上两点,且OA垂直OB,求证1/OA^2+1/OB^2为定值
A,B是椭圆x^2/a^2+y^2/b^2=1上两点,且OA垂直OB,求证1/OA^2+1/OB^2为定值

A,B是椭圆x^2/a^2+y^2/b^2=1上两点,且OA垂直OB,求证1/OA^2+1/OB^2为定值
将椭圆方程改写为:x=acosθ,y=bsinθ,其中θ为OP(x,y)与Ox轴的夹角
设A(x1,y1)对应的是θ1,B(x2,y2)对应的是θ2
根据题意,OA⊥OB,则|θ2-θ1|=π/2
不失一般性,可另θ2=θ1+π/2
则cosθ2=-sinθ1,sinθ2=cosθ1
x1 = acosθ1,y1 = bsinθ1;
x2 = acosθ2 = -asinθ1,y2 = bsinθ2 = bcosθ1
|OA|^2 = x1^2 + y1^2 = a^2cos^2θ1 + b^2sin^2θ1
|OB|^2 = x2^2 + y2^2 = a^2sin^2θ1 + b^2cos^2θ1
|OA|^2+|OB|^2 = (a^2+b^2)*(cos^2θ1+sin^2θ1) = a^2+b^2
|OA|^2*|OB|^2 = (a^2cos^2θ1 + b^2sin^2θ1)*(a^2sin^2θ1 + b^2cos^2θ1)
= (a^4+b^4)*sin^2θ1cos^2θ1 + a^2b^2*(cos^4θ1+sin^4θ1)
= (a^4+b^4-2a^2b^2)*sin^2θ1cos^2θ1 + a^2b^2*(cos^4θ1+sin^4θ1+2sin^2θ1cos^2θ1)
= (a^2-b^2)^2*sin^2θ1cos^2θ1 + a^2b^2*(cos^2θ1+sin^2θ1)^2
= (a^2-b^2)^2*sin^2θ1cos^2θ1 + a^2b^2
= (ab)^2 + (c*sinθ1cosθ1)^2
1/|OA|^2 + 1/|OB|^2 = (|OA|^2 + |OB|^2)/(|OA|^2*|OB|^2)
= (a^2+b^2)/[(ab)^2+(c*sinθ1cosθ1)^2]
似乎不为常数嘛

  • 可以设A(acosθ,bsinθ)B(acosα,bsinα)其中α=θ+π/2

  • 则有OA^2+OB^2=a^2cosθ^2+b^2sinθ^2+a^2cosα^2+b^2sinα^2

  • =a^2+b^2

  • OA^2×OB^2=(a^2cosθ^2+b^2sinθ^2)×(a^2cosα^2+b^2sinα^2)

  • =[a^2(1-sinθ^2)+b^2sinθ^2]×[a^2sinθ^2+b^2(1-sinθ^2)]

  • =(a^2-sinθ^2c^2)(b^2+c^2sinθ^2)

  • =a^2b^2+a^2c^2sinθ^2-b^2c^2sinθ^2-c^4sinθ^2

  • =a^2b^2

  • 可证得:1/OA^2+1/OB^2

  • =(OA^2+OB^2)/(OA^2×OB^2)

  • =(a^2+b^2)/(a^2b^2)

  • =1/a^2+1/b^2

  • 看不懂欢迎追问  求采纳

定义 离心率e=(根号5-1)/2的椭圆为黄金椭圆 对于椭圆x平方/a平方+y平方/b平方=1(a>b>0).c为椭圆半焦距 如果a.b.c不成等比数列 则椭圆 a.一定是黄金椭圆 b 一定不是黄金椭圆c 可能是黄金椭圆d 可能 为什么椭圆的标准式是“x^2/a^2+y^2/b^2=1? 一道椭圆的题,已知椭圆x^2/a^2+y^2/b^2=1 (a>b>0)A B是 椭圆上两点,线段AB的垂直平分线与X轴相交与P( x0,0)证明:|x0| 已知椭圆x^2/a^2+y^2/b^2=1,A,B是椭圆短轴的两个端点,p是椭圆上异于A,B上 任意一点,若PA,PB的斜率之积 二重积分y-x-2,积分区域是椭圆,x^2/a^2+y^2/b^2=1 一道椭圆的数学题.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若三角形ABF2是等腰直角三角形,则这个椭圆的离心率是?设椭圆方程为:x^2/a^2+y^2/b^2=1,a>b>0,则A、B坐 x^2*y^2在椭圆中的二重积分怎么算x^2/a^2+y^2/b^2=1是所求椭圆 椭圆x^2/a^2+y^2/b^2=1上有一点M,F1,F2是椭圆的两个焦点,若MF1*MF2=2b^2,则椭圆离心率的范围是,a>b>o急! 已知c是椭圆x^2/a^2+y^2/b^2=1{a>b>0}的半焦距,求{b+C}/a的取值范围? 椭圆C的方程为y^2/a^2+x^2/b^2=1(a>b>0),A是椭圆c的短轴左顶点,过A作斜率为-1...椭圆C的方程为y^2/a^2+x^2/b^2=1(a>b>0),A是椭圆c的短轴左顶点,过A作斜率为-1的直线交椭圆为B点,点P(1,0),且BP平行于y轴,三 如图所示,从椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点P向x轴作垂线,恰好通过椭圆如图所示,从椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点P向x轴作垂线,恰好通过椭圆的左焦点F1,A是椭圆与x轴正半轴的焦点,B是y轴与 数学题:椭圆 抛物线已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一条准线方程x=9/根号5,且该椭圆上的点到右焦点的最近距离为3-根号5(1)求椭圆方程(2)设F1,F2是椭圆左右两焦点,A是椭圆与y轴负半轴的 如图,从椭圆 上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y...从椭圆 x^2/a^2+Y^2/b^2(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆 已知椭圆x^2/a^2+y^2/b^2(a 如何从椭圆的一般方程求椭圆的五个参数已知椭圆一般方程为A*x^2+B*x*y+C*y^2+D*x+E*y+F=0,其中A,B,C,D,E,F,均不为0,现在要去求椭圆的中心坐标(x0,y0),椭圆的长半轴a,椭圆的短半轴b,以及椭圆长半轴与X 离心率为黄金比(根号5-1)/2的椭圆称为“优美椭圆”,设x^2/a^2+y^2/b^2=1(a>B>0)是优美椭圆,F,A分别是 关于过已知两点求椭圆方程问题按照老师所讲,已知两点求过两点椭圆方程时,需分类讨论:椭圆在x轴上时 设椭圆为x^2/a^2+y^2/b^2 此时a>b>0椭圆在y轴上时 设椭圆为x^2/b^2+y^2/a^2 此时仍a>b& 椭圆的焦点在Y轴上,对椭圆的公式有什么要求吗?RT 公式是x^2/a^+y^2/b^2=1