设a1,a2,...an是n维欧氏空间V的一组基,a,b是V中任意向量,且,a=x1a1+...+xnan,b=y1a1+...+ynan证明(a,b)=x1y1+...+xnyn《=》a1,a2...an是标准正交基

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:01:02
设a1,a2,...an是n维欧氏空间V的一组基,a,b是V中任意向量,且,a=x1a1+...+xnan,b=y1a1+...+ynan证明(a,b)=x1y1+...+xnyn《=》a1,a2...an是标准正交基
xՒNP_ŝ3,Y,;3IC!GƈT33h(p߇9] sJ%>sr~`,$IMExj;7L\vIxt]&i6ք֯d>arf'%I( u./JBu)TR=Z:XX^*h\qOv$M*wdgm䏙Z38> FV:vƿh^xz.88{V7r+ҼMk,BGvÎmcR}_\xA+_α4؛wCtDuu.Gbb6QpxMh/"A{OT:2} ˷4w gTcxkƨQq1"j`P5QvggϢd?x7

设a1,a2,...an是n维欧氏空间V的一组基,a,b是V中任意向量,且,a=x1a1+...+xnan,b=y1a1+...+ynan证明(a,b)=x1y1+...+xnyn《=》a1,a2...an是标准正交基
设a1,a2,...an是n维欧氏空间V的一组基,a,b是V中任意向量,且,a=x1a1+...+xnan,b=y1a1+...+ynan证明(a,b)=x1y1+...+xnyn《=》a1,a2...an是标准正交基

设a1,a2,...an是n维欧氏空间V的一组基,a,b是V中任意向量,且,a=x1a1+...+xnan,b=y1a1+...+ynan证明(a,b)=x1y1+...+xnyn《=》a1,a2...an是标准正交基
对于任何的α,β∈V,和记阿尔法=Σki×AI,β=Σk'i×AI,已被证明α+β=Σ(KI + k'i)×AI∈V加法封闭;任何常数y和任何向量α=Σki×AI,功率非线性西格马(YKI),×爱∈V数的乘法也被关闭,设置向量VR的n次方的儿子空间.同样,下半年也是如此.您可以写标题,详尽,准确的感觉有点多余

设V是n维欧氏空间,a1,a2...an是V的一组基,b属于V,若(b,ai)=0,i=1,2,...,n,试证:b=0线性代数 设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量求解第13题 设a1,a2,...an是n维欧氏空间V的一组基,a,b是V中任意向量,且,a=x1a1+...+xnan,b=y1a1+...+ynan证明(a,b)=x1y1+...+xnyn《=》a1,a2...an是标准正交基 V是n维的空间向量,有两个基B=(a1,a2...,an)和B'=(a1',a2'...an').B和B'的关系是什么? 一个基础的线性代数问题. 设a1,a2,a3...an 为n维向量空间V的一个基. 为什么 r([一个基础的线性代数问题.设a1,a2,a3...an 为n维向量空间V的一个基.为什么 r([a1,a2...an])=n ?不用考虑列向量的行数吗?比 设V是一个n维欧式空间,a1,a2,.,am是V中的正交向量组,令:W={α | (a,ai)=0,α∈ V ,i=1,2,...m}证明:W是V的一个子空间证明:W的正交补 =L(a1,12,...an) 设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2 设a1,a2...an是1,2...n的一个排列求证1/2+2/3+...+n-1/n小于等于a1/a2+a2/a3+..an-1/an 设W是R^n的一个非零子空间,而对于W的每一个向量(a1,a2.an)来说,要么a1=a2=.=an=0,要么每一个ai都不等于0,证明dimW=1 设a1,a2,……,an(n>=2)是正实数,且满足a1+a2+……+an 设A1,A2,A3…,An是常数(n是大于1的整数,且A1 设a1,a2,...,an都是正数,证明不等式(a1+a2+...+an)[1/(a1)+1/(a2)+...+1/(an)]>=n^2 设a1,a2,...,an是n维列向量空间R^n的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组Aa1,Aa2...,Aan一定是R^n的基 设a1,a2…an是1,2…,n的任意一个排列,n为奇数,试证(a1-1)(a2-2)(a3-3)...(an-n)为偶数 向量空间(高数)①V=(0,a1,a3,……,an/aj属于R,2≤j≤n)是一个向量空间 ②V=(1,a1,a2,a3,……,an/aj属于R,j=2,3,……,n)不是一个向量空间. 注:以上,a1,a2,a3,an/aj的1,2,j等都是a的右小标. 我就想 设a1,a2,...an是一组n维向量,证明:a1,a2,...an线性无关的充要条件是任一n维向量都可被他们线性表出 设a1,a2,a3,...an是n维列向量空间Rn的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组Aa1 Aa2 Aa3.Aan一定是Rn的基. 设a1,a2,.an是正数.求证a2 /(a1+a2)^2+a3/(a1+a2+a3)^2+.+an/(a1+a2+.+an)^2