数列{xn}满足logaxn+1=1+logaxn(a>0,a≠1),x1+x2+...x100=100则x101+x102+...x200=?珴能知道它是等比数列,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 23:52:27
数列{xn}满足logaxn+1=1+logaxn(a>0,a≠1),x1+x2+...x100=100则x101+x102+...x200=?珴能知道它是等比数列,
x){6uӎyv/|msN~zbE6~OG= tu.0|SPH[OOv2q#-/>e뚟X|mS 6$SvA؝";?rь<ٱ ,h+@xw3.D>\ U,=P|F O 0M5!llj+>m`aj 6Tkd`>ƴU.`~qAb(TE

数列{xn}满足logaxn+1=1+logaxn(a>0,a≠1),x1+x2+...x100=100则x101+x102+...x200=?珴能知道它是等比数列,
数列{xn}满足logaxn+1=1+logaxn(a>0,a≠1),x1+x2+...x100=100
则x101+x102+...x200=?
珴能知道它是等比数列,

数列{xn}满足logaxn+1=1+logaxn(a>0,a≠1),x1+x2+...x100=100则x101+x102+...x200=?珴能知道它是等比数列,
解原题应为
logax(n+1)=1+logaxn
即logax(n+1)-logaxn=1
即logax(n+1)/xn=1
x(n+1)/xn=a
数列{xn}是等比数列由x1+x2+...x100=100,即x1(1-a^100)/(1-a)=100
故x1+x2+...x100+x101+x102+...x200=x1(1-a^200)/(1-a)=x1(1-a^100)(1+a^100)//(1-a)=100(1+a^100)
即x101+x102+...x200=100(1+a^100)-100=100a^100