如图,在矩形ABCD中,AD=4,AB=mm大于4) 点P式AB上的任意一点(不与点A点B重合)连接PD如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:58:27
如图,在矩形ABCD中,AD=4,AB=mm大于4) 点P式AB上的任意一点(不与点A点B重合)连接PD如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q
xVnF,-D\@tAI;o(h#kFR㈊,ieI1b j2!~g8$r`ڗ{g΁c "1i4bG'VS)qY)I;b[%ZVk/[,OY*!R"Y5B]S { isǮ)q~ ;^g`41CEzHX]E`r3T=љ]/9 l، Ql×TPp*MB^;ƉMg7J~FKj s8ywj0}Z] O5>GoMLFd?Joj3˧i 8>'J$sWyF'Y}:vpq^H螬[9r@eiq΀mټ]xḑCJuVf7b=J^(x{W4zGl|dccՆSY: y]ru|4ȕ<9A`(ZDW5 S?/1$G9;E[<hjs RTy- o,uSw{o1[+׹N02xظu%!:e( G;gƈLR Gù*8 aPT_ w%݌,31Q Mz<5ZkFVi+c+ G;AԤ ZKFEm^ gEYƑy1M@N 4>iA"bFMfTLLk*I$CwݯҬ,/jzXJYx͋4kԯxCIeR5T)"?,|ݬ21寪m[GzCXủ9}Su~aӿ筜/Үb %rL}b3X[*

如图,在矩形ABCD中,AD=4,AB=mm大于4) 点P式AB上的任意一点(不与点A点B重合)连接PD如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q
如图,在矩形ABCD中,AD=4,AB=mm大于4) 点P式AB上的任意一点(不与点A点B重合)连接PD
如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;
(2)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示);
(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.

如图,在矩形ABCD中,AD=4,AB=mm大于4) 点P式AB上的任意一点(不与点A点B重合)连接PD如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q
根据函数关系可以建立一定的坐标系,(题目没看到图)我选择以B为原点:建立坐标,
有:C(4,0),D(4,10),设P(0,Y)可得:两直线垂直关系,斜率乘积为-1,或者采用向量之间关系,
K1=(10-Y)/4;K2=-Y/4,K1×K2=-1,解得(Y-8)(Y-2)=0,所以Y=8,或者Y=2,
因此AP=8或者AP=2.
(2)因为PQ∥AC,两直线平行,斜率相等,且A(0,m),Q(X,0)有:
KAC=-m/4,KPQ=-Y/X,又因为PQ⊥PD,因此有:(m-Y)Y=4X,KAC=KPQ,联立解得:
m^2×(4-X)=64,所以X=4-8/m;为所求,因此BQ=4-8/m;
(3)因为△PQD为等腰三角形,且∠DPQ=90°,所以PD=PQ,根据边长关系可得:
Y^2+X^2=16+(Y-m)^2;
面积S=S1+S2(S1=1/2XPDXPQ;S2=1/2XQCXCD) 可以得出:
X^2=16-2Ym+m^2;4X=mY-Y^2;S=1/2[16+(Y-m)^2]+1/2(4-x)m;
即可推出S的关系式

根据函数关系可以建立一定的坐标系,(题目没看到图)我选择以B为原点:建立坐标,
有:C(4,0),D(4,10),设P(0,Y)可得:两直线垂直关系,斜率乘积为-1,或者采用向量之间关系,
K1=(10-Y)/4;K2=-Y/4,K1×K2=-1,解得(Y-8)(Y-2)=0,所以Y=8,或者Y=2,
因此AP=8或者AP=2。
(2)因为PQ∥AC,两直线平行,斜...

全部展开

根据函数关系可以建立一定的坐标系,(题目没看到图)我选择以B为原点:建立坐标,
有:C(4,0),D(4,10),设P(0,Y)可得:两直线垂直关系,斜率乘积为-1,或者采用向量之间关系,
K1=(10-Y)/4;K2=-Y/4,K1×K2=-1,解得(Y-8)(Y-2)=0,所以Y=8,或者Y=2,
因此AP=8或者AP=2。
(2)因为PQ∥AC,两直线平行,斜率相等,且A(0,m),Q(X,0)有:
KAC=-m/4,KPQ=-Y/X,又因为PQ⊥PD,因此有:(m-Y)Y=4X,KAC=KPQ,联立解得:
m^2×(4-X)=64,所以X=4-8/m;为所求,因此BQ=4-8/m;
(3)因为△PQD为等腰三角形,且∠DPQ=90°,所以PD=PQ,根据边长关系可得:
Y^2+X^2=16+(Y-m)^2;
面积S=S1+S2(S1=1/2XPDXPQ;S2=1/2XQCXCD) 可以得出:
X^2=16-2Ym+m^2;4X=mY-Y^2;S=1/2[16+(Y-m)^2]+1/2(4-x)m;
即可推出S的关系式

收起

湖南中考题????

根据函数关系可以建立一定的坐标系,(题目没看到图)我选择以B为原点:建立坐标,
有:C(4,0),D(4,10),设P(0,Y)可得:两直线垂直关系,斜率乘积为-1,或者采用向量之间关系,
K1=(10-Y)/4;K2=-Y/4,K1×K2=-1,解得(Y-8)(Y-2)=0,所以Y=8,或者Y=2,
因此AP=8或者AP=2。
(2)因为PQ∥AC,两直线平行,斜...

全部展开

根据函数关系可以建立一定的坐标系,(题目没看到图)我选择以B为原点:建立坐标,
有:C(4,0),D(4,10),设P(0,Y)可得:两直线垂直关系,斜率乘积为-1,或者采用向量之间关系,
K1=(10-Y)/4;K2=-Y/4,K1×K2=-1,解得(Y-8)(Y-2)=0,所以Y=8,或者Y=2,
因此AP=8或者AP=2。
(2)因为PQ∥AC,两直线平行,斜率相等,且A(0,m),Q(X,0)有:
KAC=-m/4,KPQ=-Y/X,又因为PQ⊥PD,因此有:(m-Y)Y=4X,KAC=KPQ,联立解得:
m^2×(4-X)=64,所以X=4-8/m;为所求,因此BQ=4-8/m;
(3)因为△PQD为等腰三角形,且∠DPQ=90°,所以PD=PQ,根据边长关系可得:
Y^2+X^2=16+(Y-m)^2;
面积S=S1+S2(S1=1/2XPDXPQ;S2=1/2XQCXCD) 可以得出:
X^2=16-2Ym+m^2;4X=mY-Y^2;S=1/2[16+(Y-m)^2]+1/2(4-x)m;
即可推出S的关系式

收起

如图,在矩形ABCD中,AB=6,AD=12 如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF,AB=2,S矩形ABCD=9S矩形ECDF,试求S矩形ABCD.图片:?t=1304004559390 如图 矩形ABCD中,E、F分别在BC、AD上,矩形ABCD∽矩形ECDF且AB=2,S矩形ABCD=3S矩形ECDF,试求S矩形ABCD 如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF且AB=2 S 矩形ABCD=3S矩形ECDF,试求S矩形ABCD 如图,在矩形ABCD中,E、F分别在AD、BC边上,矩形ABCD∽矩形FCDE的面积的3倍,AB=4,求矩形ABCD的面积图片:?t=1304004559390 如图,在矩形ABCD中AB=8,AD=6,EF//AD,若矩形ABCD相似于矩形DAEF,求矩形ABCD和矩形DAEF的面积比 如图,在矩形ABCD中,AD=8,AB=6,EF//AB,矩形ABFE与矩形ADCB相似 则AE=凑合这看啊 · 如图,在矩形ABCD中,BD=2AB.(1)求角ADB的度数.(2)若AD=3cm,求矩形ABCD的面积 如图,在矩形ABCD中,AD=2AB=4a,矩形AEFG∽矩形ABCD,且AE=4/3a (1)求AG的长 2)试说明△ABE∽△ADG 如图,在矩形ABCD中,AB=3,BC=5,BE=AD,求sin∠BEC 如图,在矩形ABCD中,AB= a,AD= a.有8个大小相等的小正方形 如图在矩形ABCD中,BC=2AB,E是AD的中点,求证:EB⊥EC 如图,在矩形ABCD中,AB=4,AD=3.把矩形沿直线AC折叠,点B落在点E出.连接DE.四边形A如图,在矩形ABCD中,AB=4,AD=3.把矩形沿直线AC折叠,点B落在点E出。连接DE。四边形ACDE是什么图形?请说明理由,并计算 如图,在矩形ABCD中,AB=4cm,AD=3cm,把矩形沿直线AC折叠,点B落在点E处,连接DE.四边形ACED是什么图形如题:在矩形ABCD中,AB=4cm,AD=3cm,把矩形沿直线AC折叠,点B落在点E处,连接DE.四边形ACED是什么图形? 如图矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF且AB=2,S矩形ABCD=S矩形ECDF,试求S矩形ABCD图是我自己画的S矩形ABCD=3S矩形ECDF抱歉 已知;如图在矩形ABCD中,AE垂直BD于点E,若BE:ED=1:3,AB=1,求AD ( 用矩形定理证明) 如图,在矩形ABCD和矩形BFDE中,BE交AD于M,DF交BC于N,若AB=BF,求证MN垂直CF. 矩形ABCD中,E、F分别在BC、AD上,矩形ABCD相似矩形ECDF,且AB=2,S矩形ABCD=4S矩形ECDF,试求S矩形ABCD