定义在R上的函数y=f(x) y=f(-x) y=-f(x) y=-f(-x)的图像重合 他们的值域为?是不是0?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:37:17
定义在R上的函数y=f(x) y=f(-x) y=-f(x) y=-f(-x)的图像重合 他们的值域为?是不是0?
x){n֓Oz{MPiQt. isާ:dhÞ?ٱٌOvI{"}62;y u&#bg3@O[7?Wbۗ=t73[n.]¦TMzɎn):OvhA({8NJ t'6yvi/

定义在R上的函数y=f(x) y=f(-x) y=-f(x) y=-f(-x)的图像重合 他们的值域为?是不是0?
定义在R上的函数y=f(x) y=f(-x) y=-f(x) y=-f(-x)的图像重合 他们的值域为?
是不是0?

定义在R上的函数y=f(x) y=f(-x) y=-f(x) y=-f(-x)的图像重合 他们的值域为?是不是0?

y=f(x),y=f(-x)图像重合,说明f(x)关于y轴左右对称;
y=f(-x),y=-f(-x)图像重合,说明f(x)关于x轴上下对称,从而说明f(x)恒等于0,于是值域为{0}

定义在R上的函数y=f(x),满足f(3-x)=f(x),f'(x) 定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy,f(1)=2 求f(3)的值 定义在R上的函数f(x)瞒足f(x+y)=f(x)+f(y)+2xy,f(1)=2,则f(-3)= 定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy,f(1)=2,则f(-3)= 定义在R上的函数f(x)满足:f(x+y)=f(x)+f(y)且x>0时f(x) 已知定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)则f(x)的奇偶性 已知F(X)是定义在R上的函数满足F(X+Y)=F(X)+F(Y)+1,则F(X)+1的奇偶性如何? 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)是奇函数 定义在R上的函数f(x),对任意x,y∈R,豆油:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断f(x)的奇偶性 f(x)是定义在R上的函数,对任意x,y∈R,f(x+y)+f(x-y)=2f(x)f(y)恒成立,且f(0)≠0求f(x)的奇偶性 定义在实数集R上的函数f(x),对于任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.1 判断f(x)的奇偶性. 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)为偶函数 定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性, 证明:利用f(定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性,证明:利用f(x) 已知f(x)是定义在R上的函数,对于任意的x,y属于R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.判断函数的奇偶性 定义在R+上的函数f(x)满足:1.对任意x,y∈R+,都有f(xy)=f(x)+f(y) 2.当x>1时,f定义在R+上的函数f(x)满足:1.对任意x,y∈R,都有f(xy)=f(x)+f(y) 2.当x>1时,f(x)>0.1.求证:f(x)在R+上是增函数2.求证:f(y/x)=f(y)-f(x 定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x>0时,f (x)>0,判断f (x)在R的单调 定义在实数集R上的函数F(X)对任意X,Y∈R,有F(X+Y)+F(X-Y)=2F(X)*f(Y)f(0)不等于0.求证F(0)=1 定义在R上的函数f(x)对一切实数x,y满足:f(x)≠0,且f(x+y)=f(x)*f(y),且当x1求证:f(x)在x∈R上是减函数