在四边形ABCD中,∠DAB与∠ABC的平分线交于四边形内一 (20 19:3:3)在四边形ABCD中,∠DAB与∠ABC的平分线交于四边形内一点P,求证:∠P=1/2(∠C+∠D)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:34:17
在四边形ABCD中,∠DAB与∠ABC的平分线交于四边形内一 (20 19:3:3)在四边形ABCD中,∠DAB与∠ABC的平分线交于四边形内一点P,求证:∠P=1/2(∠C+∠D)
在四边形ABCD中,∠DAB与∠ABC的平分线交于四边形内一 (20 19:3:3)
在四边形ABCD中,∠DAB与∠ABC的平分线交于四边形内一点P,求证:∠P=1/2(∠C+∠D)
在四边形ABCD中,∠DAB与∠ABC的平分线交于四边形内一 (20 19:3:3)在四边形ABCD中,∠DAB与∠ABC的平分线交于四边形内一点P,求证:∠P=1/2(∠C+∠D)
证明:
在三角形PAB中,由三角形内角和定律
知有∠P+∠PAB+∠PBA=180度 即,∠P+1/2∠DAB+1/2∠ABC=180度.
又四边形内角和=360度.∠C+∠D+∠DAB+∠ABC=360度
即 1/2(∠C+∠D+∠DAB+∠ABC)=180度
比较两式得
∠P=1/2(∠C+∠D)
∠P=180-1/2(∠DAB+∠ABC)
=180-1/2(360-∠C-∠D)
=180-180+1/2(∠C+∠D)
=1/2(∠C+∠D)
∠P+∠PAB+∠PBA=180度 即,∠P+1/2∠DAB+1/2∠ABC=180度.
又四边形内角和=360度.∠C+∠D+∠DAB+∠ABC=360度
即 1/2(∠C+∠D+∠DAB+∠ABC)=180度
比较两式得
∠P=1/2(∠C+∠D)
证明:
在四边形ABCD中,∠DAB+∠ABC+∠C+∠D=
∠C+∠D=360°-(∠DAB+∠ABC)
在△ABP中,∠P=180°-(∠PAB+∠PBA)
因为∠DAB与∠ABC的平分线交于四边形内一点P
所以 ∠PAB+∠PBA=(∠DAB+∠ABC...
全部展开
证明:
在四边形ABCD中,∠DAB+∠ABC+∠C+∠D=
∠C+∠D=360°-(∠DAB+∠ABC)
在△ABP中,∠P=180°-(∠PAB+∠PBA)
因为∠DAB与∠ABC的平分线交于四边形内一点P
所以 ∠PAB+∠PBA=(∠DAB+∠ABC)/2
所以 ∠P=1/2(∠C+∠D)
收起