已知等腰三角形ABC中 AB=AC=10 D为边BC上任意一点 DE⊥AB DF⊥AC 若∠BAC=60°,求AE+AF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:59:07
已知等腰三角形ABC中 AB=AC=10 D为边BC上任意一点 DE⊥AB DF⊥AC 若∠BAC=60°,求AE+AF
xKNPRB%v@`R$ F" Lj@-2p)-#=-A6zi76^}u&VQdI3P-{Xr@UEX|^uԡ=HREOR[rJe3m*h &gY▉=kxD9)i:WExC_G)LեDc-TU7*ew-TENa*Al-MyWhBbqU!^LJ<%t11FWUx$VyO$s<#Re)]YRHc3_iYkh?{/؉V+4F|q\7`y]`1S \?

已知等腰三角形ABC中 AB=AC=10 D为边BC上任意一点 DE⊥AB DF⊥AC 若∠BAC=60°,求AE+AF
已知等腰三角形ABC中 AB=AC=10 D为边BC上任意一点 DE⊥AB DF⊥AC 若∠BAC=60°,求AE+AF

已知等腰三角形ABC中 AB=AC=10 D为边BC上任意一点 DE⊥AB DF⊥AC 若∠BAC=60°,求AE+AF
由题意可知,等腰三角形ABC中,∠BAC=60°
所以三角形ABC是等边三角形,∠ABC=∠BCA=60°
在Rt三角形BDE中,∠EBD=∠ABC=60°,可得∠BDE=30°
所以∠BDE所对的直角边BE=1/2BD
同理可得在Rt三角形CDF中,∠CDF所对的直角边CF=1/2CD
BE+CF=1/2BD+1/2CD=1/2(BD+CD)=1/2BC
AE+AF=(AB-BE)+(AC-CF)=AB+AC-(BE+CF)=10+10-1/2*10=15
【数学辅导团】为您解答!
理解请点击“选为满意回答!”按钮