设α=(1,2,3),β=(1,1/2,1/3),设矩阵A=α^Tβ,其中α^T是α的转置,求A^n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:53:20
设α=(1,2,3),β=(1,1/2,1/3),设矩阵A=α^Tβ,其中α^T是α的转置,求A^n
x){n߹:F:ƚ:6F@ %_rVGsBmyںɎ γm|>5y1.&HFĝf{޲ ̄ A#BDL΀ C?ۼYKӎ q[Cm 5@1DVLkqF+_4i-901uA2t6<ٽ t Z P q_\gA0dTf Pem bCecL"(

设α=(1,2,3),β=(1,1/2,1/3),设矩阵A=α^Tβ,其中α^T是α的转置,求A^n
设α=(1,2,3),β=(1,1/2,1/3),设矩阵A=α^Tβ,其中α^T是α的转置,求A^n

设α=(1,2,3),β=(1,1/2,1/3),设矩阵A=α^Tβ,其中α^T是α的转置,求A^n
显然
A^n
=α^Tβα^Tβα^Tβ……α^Tβα^Tβ
=α^T*(βα^T)*(βα^T)……(βα^T)*β
注意到βα^T=1+(1/2)*2+(1/3)*3=3

A^n
=α^T*(βα^T)*(βα^T)……(βα^T)*β
=3^(n-1) α^Tβ

α^Tβ =
(1,1/2,1/3
2,1,2/3
3,3/2,1)
所以
A^n=
(1,1/2,1/3 * 3^(n-1)
2,1,2/3
3,3/2,1)

A^n=(3^(n-1))[1 1/2 1/3;2 1 2/3;3 3/2 1]