求y''+arctanx=0通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:47:07
求y''+arctanx=0通解
x){R]];($1eì$/QV)PV*}Ա*Raaoa]g[v6Rxk)+vl^|z :@g3?ݱ Pl۴4*PhIL!8h.HhN9 !F?ٽf$6>l+j7ЪJ[r,p6Dq~qAb(r9L

求y''+arctanx=0通解
求y''+arctanx=0通解

求y''+arctanx=0通解
∵y''+arctanx=0
==>y''=-arctanx
==>y'=-∫arctanxdx=(1/2)ln(1+x^2)-xarctanx+C1* (应用分部积分法,C1*是常数)
∴y=∫[(1/2)ln(1+x^2)-xarctanx+C1]dx
=(x/2)ln(1+x^2)-(x^2/2)arctanx+(1/2)arctanx+(C1*-1/2)x+C2 (应用分部积分法,C2是常数)
=(x/2)ln(1+x^2)-(x^2/2)arctanx+(1/2)arctanx+C1x+C2 (令C1=C1*-1/2)
故原方程的通解是y==(x/2)ln(1+x^2)-(x^2/2)arctanx+(1/2)arctanx+C1x+C2 (C1,C2是常数).