如图,在正方体ABCD-A1B1C1D1中,(1)证明A1C⊥BD,(2)求A1C与底面ABCD所成角的正切值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:43:21
如图,在正方体ABCD-A1B1C1D1中,(1)证明A1C⊥BD,(2)求A1C与底面ABCD所成角的正切值
xQMN@JԌi%)$ A=!A,. ?D@ݠE.d W)5qݛy},مނݫd;&}ȨE9$EˑeTZ¯A?ECZ^credJ_3 2@/1 "qaf!UP#H#f4f6@o|a>u/XvƵ-Fh\.᭫&[PYGK@cib6LrɦĦC'vGU{(9N>bFN8F*ҳZ7ҦqZpeu

如图,在正方体ABCD-A1B1C1D1中,(1)证明A1C⊥BD,(2)求A1C与底面ABCD所成角的正切值
如图,在正方体ABCD-A1B1C1D1中,(1)证明A1C⊥BD,(2)求A1C与底面ABCD所成角的正切值

如图,在正方体ABCD-A1B1C1D1中,(1)证明A1C⊥BD,(2)求A1C与底面ABCD所成角的正切值
(1)因为AA1⊥AB,AA1⊥AD,AB与AD相交点A,所以:AA1⊥平面ABCD 那么A1C在平面ABCD内的射影为AC 又在平面ABCD内,BD⊥AC 所以由三垂线定理可得:A1C⊥BD (2)由(1)知A1C在平面ABCD内的射影为AC 那么A1C与平面ABCD所成角为∠A1CA 令正方体棱长为a,则易得:AC=根号2*a 所以在Rt△A1AC中,tan∠A1CA=AA1/AC=a/(根号2*a)=(根号2)/2