一道高三立体几何题,道友快来助

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:01:55
一道高三立体几何题,道友快来助
xSmOP+ FIۺNwK 66m? !2@,[@D!`SBOYn_i6"bܗ9ssm|ޛ_5vsXל]o^u.澳9C#*=/΄Ge>LuޟBwn+*T8#(` @7ǿSKU84X5GEhj_=s?7xi}PQ[hTm4aD0!L6@]y> TKKa]S2n} !7AR)?4$0AShj8 9#O+8aMTׅu@׃PM0^׿u`8>ejPlRh|\ LF9^FIpjf

一道高三立体几何题,道友快来助
一道高三立体几何题,道友快来助
 

一道高三立体几何题,道友快来助
在直三棱柱ABC-A1B1C1中,AC=BC=a,∠ACB=90°,D,E分别为AB,BC中点,M为AA1上的点,二面角M-DE-A=30°
(1)求证:C1D⊥A1B1
(2)求MA,求C到面MDE的距离.
(1)证明:∵在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC中点
连接C1D,CD
∵AC=BC=a,∠ACB=90°,
∴CD⊥AB,C1C⊥面ABC
∴C1D⊥AB
∵AB//A1B1
∴C1D⊥A1B1
(2)解析:∵M为AA1上的点,二面角M-DE-A=30°
过D作DF//BC交AC于F
∴DE//AC==>DF⊥DE
过M作MN//AC交CC1于N,过F作FG⊥AC交MN于G
∴FG=MA
连接GD,易知GD⊥DE
∴∠GDF为二面角M-DE-A的平面角,∠GDF =30°
DF=EC=a/2
∴MA=GF=DF*tan30°=√3a/6

∵AC//面MDE,∴C到面MDE的距离等于F到面MDE的距离
∵AC⊥面DFG==>面DFG⊥面MDE
过F作FH⊥面MDE交GD于H
FH=FD*sin30°=a/4
即C到面MDE的距离等于a/4