设xy是满足2x+y=20的正数,则lg(20x)+lgy的最大值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:31:46
设xy是满足2x+y=20的正数,则lg(20x)+lgy的最大值为
xUN1~Y&J^ ы"eiPh B$@iCBx&BXZU3lao]2G?F}JXʡ[EsWav&A0Kfg鯹|~9/<;ɹbp S>.m%s/ւN5-0vxLVoL$<7# [X(jG qʞv83ɗs^D!6D T ߿[qQl_vfQP6wAA Z~IjaoH.EJilچJجF 1NՓ!Mɨe4\^:ӄk8MyN$x1nȀ4&zN$jzWv} ϯv +s]ov^9LG/d[N0q"\ǥ&Y+5W,[O n2_Z4zPB >z&aTji8]:R@5@Cl9t fH*ŽtG-P^6$T(fKC~%?M$*.F e Mz3-Al :^ # $(e<r%_-l@q[;5Yиi\m?QY

设xy是满足2x+y=20的正数,则lg(20x)+lgy的最大值为
设xy是满足2x+y=20的正数,则lg(20x)+lgy的最大值为

设xy是满足2x+y=20的正数,则lg(20x)+lgy的最大值为
20=2x+y≥2√(2xy)
当且仅当2x=y时等号成立.
所以 10≥√(2xy)
xy≤50
lg(20x)+lgy
=lg(20xy)
≤lg(20*50)
=3
所以 lg(20x)+lgy的最大值为3

没有笔不好算

x>0,y>0

20=2x+y≥2√(2xy) 当2x=y时等号成立。

xy≤50
lg(20x)+lgy=lg(20xy)≤lg1000
即最大值为3

2x+y>=2(2xy)^0.5,所以答案是3.

由2x+y=20得,x=1,2,..,9;y=20-2x。
所以,lg(20x)+lgy=lg(20x)+lg(20-2x)=lg20x(20-2x)=lg20(20x-x^2)=lg20[-(x-10)^2+100]
根据抛物线的对称性和开口方向,可得,
当x=9时,值最大。lg(20x)+lgy=lg(20*99)=lg1980

lg(20x)+lgy=lg(20xy)最大值,所以只需求xy的最大值即可。
满足2x+y=20的正数有(y必须为偶数,因为2x和20都是偶数)
方法一:
y=2,x=9, xy=18; y=4,x=8,xy=32; y=6,x=7, xy=42;y=8,x=6,xy=48;
y=10,x=5,xy=50; y=12,x=4,xy=48;y=14,x=3,xy=42...

全部展开

lg(20x)+lgy=lg(20xy)最大值,所以只需求xy的最大值即可。
满足2x+y=20的正数有(y必须为偶数,因为2x和20都是偶数)
方法一:
y=2,x=9, xy=18; y=4,x=8,xy=32; y=6,x=7, xy=42;y=8,x=6,xy=48;
y=10,x=5,xy=50; y=12,x=4,xy=48;y=14,x=3,xy=42; y=16,x=2,xy=32;y=18,x=1,yx=18
xy的最大值为50, 所以lg(20x)+lgy的最大值为lg(20xy)=lg(20*50)=3

方法2 2x+y=20, 所以 y=20-2x, xy=x(20-2x)
=20x-2x2= -2(x-5)2 +50; x=5时,xy最大值为50,同样取得上述结果。

收起