函数 y=(sinx)^2-2sinxcosx-(cosx)^2(x属于R)的单调递增区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:27:40
函数 y=(sinx)^2-2sinxcosx-(cosx)^2(x属于R)的单调递增区间
xP=KA+)wMՀ۠Du @ 5E )䌿!;MG)lRyof=GUiH˞g|q׉Ԙm%iߟ]5nWc:i.o H4d0aV2P2 5 o 5TeQjϼaB)¯@[ XkYq^^LI}QsGsy0ŮJpQƨQOmef +|J&9&XbRv>LQ

函数 y=(sinx)^2-2sinxcosx-(cosx)^2(x属于R)的单调递增区间
函数 y=(sinx)^2-2sinxcosx-(cosx)^2(x属于R)的单调递增区间

函数 y=(sinx)^2-2sinxcosx-(cosx)^2(x属于R)的单调递增区间
y=-(cos2x-sin2x)-2siaxcosx
=-cos(2x)-sin(2x)=-√2(sin(2x+π/4)
∴单增区间为 2x+π/4∈(2kπ+π/2,2kπ+3π/2)
x∈(kπ+π/8,kπ+5π/8)

y=-2sinxcosx-[(cosx)^2-(sinx)^2]
=-(sin2x+cos2x)
=-√2(sin2x*√2/2+cos2x*√2/2)
=-√2(sin2xcosπ/4+cos2xsinπ/4)
=-√2sin(2x+π/4)
y递增则sin(2x+π/4)递减
所以2kπ+π/2<2x+π/4<2kπ+3π/2
2kπ+π/4<2x<2kπ+5π/4
kπ+π/8所以y增区间是(kπ+π/8,kπ+5π/8)