抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A、B,已知点A的坐标为(1,4),△AOB的面积为3,求a,b,k
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:30:56
xœoAMβ.(ރGffY
,mm4B5_ZŦ?"-К2,"z X{j/~?g.<<)p)[eZyӮXVlϟEZ;vnZn$\Wlڇ)f#Hښ'8G#S#\~@#mQLR\*;N'fF F$xH|zb֓fcM6q(`51
A0jI5)EN <1Z,ja,D& ERM&4FB,ĜYjW[khmK0h\
x1]蜟0R
a#w52?WOm/-x܄Xļ= L T^|U:f}GVa1=7P@,喏CrjB=N#u. kb2qTd"\C7}O/kD.z"-:f29n3thr]^Z,o:oǶ`*)-sf$~ {qV~&ﰅo\o0- HAH)1Ó?/m
抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A、B,已知点A的坐标为(1,4),△AOB的面积为3,求a,b,k
抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A、B,已知点A的坐标为(1,4),△AOB的面积为3,求a,b,k
抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A、B,已知点A的坐标为(1,4),△AOB的面积为3,求a,b,k
把A(1,4)代入y=k/x
得k=4
设B(m,4/m),m<0,直线AB解析式为y=kx+b,AB与x轴交点为C
把A(1,4)、B(m,4/m)代入y=kx+b得
4=k+b .①
4/m=km+b.②
由①②解得
k= -4/m
b= 4(m+1)/m
∴AB解析式为 y=[-4/m]·x + 4(m+1)/m
当y=0时,x=m+1
即C点坐标为(m+1,0),可以看出C在原点左边,即m+1<0
∴OC=|m+1|=-(m+1)
S△AOC=OC·4÷2=-2(m+1)
S△BOC=OC·|4/m|÷2= -(m+1)·|2/m|=2(m+1)/m (因为m<0,绝对值去掉要变号)
∴S△AOB=S△AOC+S△BOC=2(m+1)/m - 2(m+1) = 3
解得m=-2或1/2(舍)
∴4/m=-2
∴B(-2,-2)
把A(1,4)、B(-2,-2)代入y=ax²+bx
得
4=a+4
-2=4a-2b
解得a=1,b=3
抛物线证明抛物线:y=ax^2+bx+c a
如图,抛物线y=ax^2+bx+c(a
已知:抛物线y=ax^2+bx+c(a
抛物线y=ax^2+bx+c(a
已知抛物线y=ax^2+bx+c(a
已知抛物线Y=ax^2+bx+c(a
y=ax^2+bx+c(a≠0)抛物线的顶点与对称轴.求过程
已知抛物线y=x^2+2x+m与x轴相交于点A(x1,0)、B(x2,0),(x2>x1)(1)已知点P(-1,2)在抛物线y=x^2-2x+m上,求m的值;(2)若抛物线y=ax^2+bx+m与抛物线y=x^2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax^2+bx+m上,
抛物线y=ax^2+bx+c与轴交于A(-3,0),对称轴x=-1,顶点到轴距离为2,求抛物线解析式
已知抛物线y=ax^2+bx,当a>0,b
已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1) 若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1)若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m关
抛物线Y=ax的平方+bx+c与x轴交与A(x1,0),B(x2,0),x1
抛物线Y=ax的平方+bx+c与x轴交与A(x1,0),B(x2,0),x1
抛物线Y=ax的平方+bx+c与x轴交与A(x1,0),B(x2,0),x1
一般地,我们可以用配方求抛物线y=ax^2 + bx + c(a≠0)的顶点与对称轴.y=ax^2 + bx + c =a[x+(b/2a)]^2 +一般地,我们可以用配方求抛物线y=ax^2 + bx + c(a≠0)的顶点与对称轴.y=ax^2 + bx + c=a[x+(b/2a)]^2 + (4ac-b^2)/4a
已知抛物线y等于ax方加bx加c与x轴交于A(2,0),(-3,0)两点,那么方程ax方 bx
已知抛物线y等于ax方加bx加c与x轴交于A(2,0),(-3,0)两点,那么方程ax方 bx
结合二次函数 y=ax^2+bx+c的图象 求:1.抛物线y=ax^+bx+c的对称轴结合二次函数 y=ax^2+bx+c的图象求:1.抛物线y=ax^+bx+c的对称轴 2. ax^+bx+c >0的解集 3. ax^+bx+c<0的解集