函数f(x)=4sin(2x+π/3)的一条对称轴方程为.为什么不能写成x=(π/2)k+π/12呢?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:34:17
函数f(x)=4sin(2x+π/3)的一条对称轴方程为.为什么不能写成x=(π/2)k+π/12呢?
x͒N@_#D(E&q_E$@4*Z0~Ph/>nS_&՛Ƥm:gVʥjʩlDDo8Z2K5ݺV@Fc^2DWȨh)e$k3cEuis'$riOx90H3ox9x;3Ņ 3{?WRg^)u<xc2 9 nn#5OZ =>]U-=[I$G Y)Z2Amk3kz).m?^-߹F4_e]54 Nu upH5Ub-SuSK4WGgEHwTt\Fڷ{^߬)7r~qOBf$=gG5j80Od?>V>EJ

函数f(x)=4sin(2x+π/3)的一条对称轴方程为.为什么不能写成x=(π/2)k+π/12呢?
函数f(x)=4sin(2x+π/3)的一条对称轴方程为.为什么不能写成x=(π/2)k+π/12呢?

函数f(x)=4sin(2x+π/3)的一条对称轴方程为.为什么不能写成x=(π/2)k+π/12呢?
函数sinx的对称轴为x=2kπ+-π/2,
——》函数f(x)=4sin(2x+π/3)的对称轴为2x+π/3=2kπ+-π/2,
——》x=kπ+-π/4-π/6=kπ+π/12,或kπ-5π/12.
所以x=(π/2)k+π/12不对.

sina对称轴为
kπ±π/2
2x+π/3=kπ±π/22x=kπ±π/2-π/3x=(kπ±π/2-π/3)/2
x1=kπ/2-5π/12
x2=kπ/2+π/12他的对称轴没有正负之分吧?可答案是选π/12啊对称轴是α=kπ±π/2的相对位置,正负都可以
根据你的问题,应该是:题目要你给出【一条】对称轴的方程
而 x=(π/2)k+π/12 ...

全部展开

sina对称轴为
kπ±π/2
2x+π/3=kπ±π/22x=kπ±π/2-π/3x=(kπ±π/2-π/3)/2
x1=kπ/2-5π/12
x2=kπ/2+π/12

收起