证明函数f(x)=x/x2+1在(0,1)上是增函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:53:22
证明函数f(x)=x/x2+1在(0,1)上是增函数
xSAK0+Mb\ 亓x6 S:ݠ[ }}i򳜔 x1!Q]9[O ǐᾒ0MAyjQGpjak]eڨl|lY.ܫeִ@/ј1 ن-qC9mJtm8'2A)}ݜ-Pܕs{ל~krGgXlyŴ/+3Oex^\%uJ477'A w1n@DW>̰a552=P

证明函数f(x)=x/x2+1在(0,1)上是增函数
证明函数f(x)=x/x2+1在(0,1)上是增函数

证明函数f(x)=x/x2+1在(0,1)上是增函数
f(x)=x/(x²+1)
x∈(0,1)
令0<x1<x2<1
f(x2)-f(x1)
= x2/(x2²+1) - x1/(x1²+1)
= [ x2(x1²+1) - x1(x2²+1) ] / [(x1²+1)(x2²+1)]
= [(x1² x2+ x2 - x1x2²-x1 ] / [(x1²+1)(x2²+1)]
= [(x1² x2-x1) - (x1x2² - x2)] / [(x1²+1)(x2²+1)]
= [x1(x1x2-1) - x2 (x1x2-1)] / [(x1²+1)(x2²+1)]
= [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]
∵0<x1<x2<1
∴x1x2-1<0;x1- x2<0;(x1²+1)(x2²+1)>0
∴ [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]>0
∴f(x2)>f(x1),得证.

f(x)=x/(x^2+1)
f'(x) =(x^2+1- 2x^2 )/(x^2+1)^2
= (-x^2+1)/(x^2+1)^2 >0 ;x 在(0,1)
=>f(x)=x/(x^2+1) 在(0,1)上是增函数