f(x)在【a,b】上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少有一点§,使f'(§)+f(§

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 14:26:23
f(x)在【a,b】上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少有一点§,使f'(§)+f(§
xTMSA+*[hUK*4]A@)‡@?3ˉUS9%U5=[=^(ԯr-m^S¨c^F Ն)-,{AϊTڛ4tY3ЂJ4˚Dce$w?h$0͵Y? њ :`(Eؙʋ'N3$D ӽA{eDӣ2]L;j$&$qپ餔|,"Phhp(v= , Х4@g%ь;U NU  CDKu'k (( nb*YŐXE mӏ[2n {6cūK5 #az,|A4km[W_ #6Di*aH#DzIKN8X/M7.̩GP5s2S쩠{bu/ p;374B[#!m/H|5ڨ*"?ls8HnX}~@!8h84-ءƚ`~^-hcҢM$|{gV9Pxk8ƲSUZ2i!Kթ`7Am:tgʾ<> KWu@ybƍZ# ͓q,P4h!  N<^+q1}&༩>:E\w{g$:_`i19k9;x>O,M]

f(x)在【a,b】上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少有一点§,使f'(§)+f(§
f(x)在【a,b】上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少有一点§,使f'(§)+f(§

f(x)在【a,b】上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少有一点§,使f'(§)+f(§
你说的是罗尔中值定理吧
罗尔(Rolle)中值定理
如果函数f(x)满足以下条件:
①在闭区间[a,b]上连续,
②在(a,b)内可导,
③f(a)=f(b),
则至少存在一个ξ∈(a,b),使得f'(ξ)=0.
罗尔中值定理的证明
证明:因为函数f(x)在闭区间[a,b]上连续,所以存在最大值与最小值,分别用m和M表示,现在分两种情况讨论:
1.若M=m,则函数f(x)在闭区间[a,b]上必为常数,结论显然成立
2.
若M>m,则因为f(a)=f(b)使得最大值M与最小值m至少有一个在(a,b)内某点ξ处取得,从而ξ是f(x)的极值费马定理点,由条件f(x)在开区间(a,b)内可导得:f(x)在ξ处可导,故由推知:f'(ξ)=0.
罗尔中值定理的几何意义
若连续曲线y=f(x)在区间[a,b]上所对应的弧段AB,除端点外处处具有不垂直于x轴的切线,且在弧的两个端点A,B处的纵坐标相等,则在弧AB上至少有一点C,使曲线在C点处的切线平行于x轴.
罗尔中值定理还有两个升级版,拉格朗日中值定理和柯西中值定理.拉格朗日中值定理是罗尔中值 的推广,又是柯西中值的特殊情况,这三个在高等数学里是基本定理,很常用很好用.

你好这是中值定理,在高等数学上,书上直接有类似的。

是f'(§)=f(§)么?