已知:字母a、b满足√(a-1)+√(b-2)=0,求:1/(ab)+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2011)(b+2011)的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:01:37
已知:字母a、b满足√(a-1)+√(b-2)=0,求:1/(ab)+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2011)(b+2011)的值
已知:字母a、b满足√(a-1)+√(b-2)=0,求:
1/(ab)+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2011)(b+2011)的值
已知:字母a、b满足√(a-1)+√(b-2)=0,求:1/(ab)+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2011)(b+2011)的值
∵√(a-1)+√(b-2)=0
∴a-1=0
b-2=0
∴a=1
b=2
1/(ab)+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2011)(b+2011)
=1/1×2+1/2×3+1/3×4+1/4×5+……+1/2012×2013
=1-1/2+1/2-1/3+1/3-1/4+……+1/2012-1/2013
=1-1/2013
=2012/2013
√(a-1)+√(b-2)=0
a-1=0 ,b-2=0
解得 a=1 ,b=2
1/(ab)+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2011)(b+2011)
=1/(1×2) +1/(2×3) +1/(3×4)+...+1/(2012×2013)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/20...
全部展开
√(a-1)+√(b-2)=0
a-1=0 ,b-2=0
解得 a=1 ,b=2
1/(ab)+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2011)(b+2011)
=1/(1×2) +1/(2×3) +1/(3×4)+...+1/(2012×2013)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/2012-1/2013
=1-1/2013
=2012/2013
中间部分一正一负都一一消去.
收起
∵字母a、b满足√(a-1)+√(b-2)=0
∴a-1=0, b-2=0
即a=1, b=2
1/(ab)+1/(a+1)(b+1)+1/(a+2)(b+2)+……+1/(a+2011)(b+2011)
=1/1x2+1/2x3+1/3x4+……+1/2012x2013
=1-1/2+1/2-1/3+1/3-1/4+……+1/2012-1/2013
=1-1/2013
=2012/2013