y'+f'(x)y=f(x)f'(x)求微分方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:17:12
x)TNSרЬM`泍MO{l+mQ_`gCyqѺ:V TV@&P!R\VfuY`a 3
I`0SRAhH,X:
,=lx{)'Ec(v/.H̳
bg>t O'$
y'+f'(x)y=f(x)f'(x)求微分方程
y'+f'(x)y=f(x)f'(x)求微分方程
y'+f'(x)y=f(x)f'(x)求微分方程
y=e^[-∫P(x)dx]{∫Q(x)e^[∫P(x)dx]dx+C}
P(x)=f'(x) Q(x)=f(x)f'(x)
∫P(x)dx=∫f'(x)dx=f(x)
∫Q(x)e^[∫P(x)dx]dx=∫f(x)f'(x)e^f(x)dx=∫f(x)d[e^f(x)]=f(x)e^f(x)-∫e^f(x)d(f(x))=f(x)e^f(x)-e^f(x)
所以
y=e^[-f(x)][f(x)e^f(x)-e^f(x)+C]
还没有学到
二元函数f(x,y)=x+y/x-y,求f(y/x,x/y)
f(x,x)=x f(x,y)=f(y,x) (x+y)f(x,y)=yf(x,x+y)求f(14,52)
f(x/Y)=f(x)-f(y) 求证明 f(xy)=f(x)+f(y)
f(xy)=f(x)+f(y),证明f(x/y)=f(x)-f(y)
f(x,y)=xy+e^x x arctanx/y ,求f(x+y,x-y)
已知f(x+y)=f(x)+f(y)+xY(x+y),f’(0)=1.求f(x).
求初等函数若f(x)f(y)=f(x+y),则f(x)=
函数题f(x+y)=f(x)*f(y),求f(x)的值
f(1)=1/4,4f(x)f(y)=f(x+y)f(x-y),求:f(2010)=?注意,是4f(x)f(y)
导数:f(x+y)=f(x)f(y),且f'(o)=1,求f'(x)f(x+y)=f(x)f(y),且f'(o)=1,求f'(x)f(x+y)=f(x)+f(y)+2xy,且f'(o)存在,求f'(x) f(1+x)=af(x),且f'(0)=b,求f'(1)
y=f(f(f(x))) 求导
y=f(x),
f(x+y,y/x)=x²-y².求f(x,y)
f(x+y,y/x)=x^2-y^2求f(x,y)
f(x+y,x-y)=(x^2-y^2)/2xy,求f(x,y)!
f(x+y,x-y)=2xy(x-y),求f(x,y)
f(x+y,y/x)=x^2-y^2,求f(x,y),详见里面
f(x)连续且可导,并且f(x+y)=[f(x)+f(y)]/[1-f(x)f(y)],求f(x)