b^2=ac 求证:1/a+b,1/2b,1/b+c成等差数列若An为等差数列,Bn=kAn+m(k m 为常数),求证 数列Bn也成等差数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:54:39
b^2=ac 求证:1/a+b,1/2b,1/b+c成等差数列若An为等差数列,Bn=kAn+m(k m 为常数),求证 数列Bn也成等差数列
x͒?N0Ư1xN"%ר@3F"0%b$Lqb[cUO@gCb Yb2N 沾Z"o[_R޷v,x\CW Ul&3tbĎoU; WI_, Pcc@PE @C#IMv{hr"&ɕi9ۨ޺(OH |1I92!P<>)m] cz.ㆮrRQlLK1^L-E

b^2=ac 求证:1/a+b,1/2b,1/b+c成等差数列若An为等差数列,Bn=kAn+m(k m 为常数),求证 数列Bn也成等差数列
b^2=ac 求证:1/a+b,1/2b,1/b+c成等差数列
若An为等差数列,Bn=kAn+m(k m 为常数),求证 数列Bn也成等差数列

b^2=ac 求证:1/a+b,1/2b,1/b+c成等差数列若An为等差数列,Bn=kAn+m(k m 为常数),求证 数列Bn也成等差数列
1/(a+b)+1/(b+c)
=(b+c+a+b)/(a+b)(b+c)
=(a+c+2b)/(ab+b^2+ac+bc)
=(a+c+2b)/(ab+b^2+b^2+bc)
=(a+c+2b)/(ab+2b^2+bc)
=(a+c+2b)/[b(a+c+2b)]
=1/b=2*(1/2b)
所以1/(a+b),1/2b,1/(b+c)成等差数列
Bn-B(n-1)=kAn+m-kA(n-1)-m
=k[An-A(n-1)]
因为An为等差数列
所以An-A(n-1)是常数
所以k[An-A(n-1)]是常数
所以Bn-B(n-1)是常数
所以Bn也成等差数列

我小学生