已知x+1/y=y+1/z=z+1/x,且x,y,z为互不相同的正数,求证:xyz=1同上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 14:30:51
已知x+1/y=y+1/z=z+1/x,且x,y,z为互不相同的正数,求证:xyz=1同上
xPN0|Ie9sAT@,! J+Hб*?QڷI \|y=?x+fbǥILptr#(:ɰ&_Or5R1[:_96^-޿D>,EMrgma1nGv;kQ$XWrRN7Q|_-L<u^ 9@q̐sש H\Ul(^nT mvIڦ.U#ĵwl}/}

已知x+1/y=y+1/z=z+1/x,且x,y,z为互不相同的正数,求证:xyz=1同上
已知x+1/y=y+1/z=z+1/x,且x,y,z为互不相同的正数,求证:xyz=1
同上

已知x+1/y=y+1/z=z+1/x,且x,y,z为互不相同的正数,求证:xyz=1同上
因为x+1/y=y+1/z所以x-y=1/z-1/y即x-y=(y-z)/yz
同理y-z=(z-x)/xz,z-x=(x-y)/xy
所以x-y=(y-z)/yz=(z-x)/xyz^2=(x-y)/x^2y^2z^2
又x不等于y不等于z,即x-y不为0
所以x^2y^2z^2=1
又X、Y、Z是正数,所以:XYZ=1

令X+1/Y=Y+1/Z=Z+1/X=1
则 X=1-1/Y
=-(1-Y)/Y
Y=1-1/Z
则 Z=1/(1-Y)
(XYZ)^2=[-(1-Y)/Y*Y*1/(1-Y)]^2=(-1)^2=1